{"title":"具有Beta和m截断导数的Fokas-Lenells方程的光学孤子","authors":"Farah M. Al-Askar","doi":"10.1155/2023/8883811","DOIUrl":null,"url":null,"abstract":"The Fokas-Lenells equation (FLE) including the M-truncated derivative or beta derivative is examined. Using the modified mapping method, new elliptic, hyperbolic, rational, and trigonometric solutions are created. Also, we extend some previous results. Since the FLE has various applications in telecommunication modes, quantum field theory, quantum mechanics, and complex system theory, the solutions produced may be used to interpret a broad variety of important physical process. We present some of 3D and 2D diagrams to illustrate how M-truncated derivative and the beta derivative influence the exact solutions of the FLE. We demonstrate that when the derivative order decreases, the beta derivative pushes the surface to the left, whereas the M-truncated derivative pushes the surface to the right.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optical Solitons for the Fokas-Lenells Equation with Beta and M-Truncated Derivatives\",\"authors\":\"Farah M. Al-Askar\",\"doi\":\"10.1155/2023/8883811\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Fokas-Lenells equation (FLE) including the M-truncated derivative or beta derivative is examined. Using the modified mapping method, new elliptic, hyperbolic, rational, and trigonometric solutions are created. Also, we extend some previous results. Since the FLE has various applications in telecommunication modes, quantum field theory, quantum mechanics, and complex system theory, the solutions produced may be used to interpret a broad variety of important physical process. We present some of 3D and 2D diagrams to illustrate how M-truncated derivative and the beta derivative influence the exact solutions of the FLE. We demonstrate that when the derivative order decreases, the beta derivative pushes the surface to the left, whereas the M-truncated derivative pushes the surface to the right.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-11-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1155/2023/8883811\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1155/2023/8883811","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Optical Solitons for the Fokas-Lenells Equation with Beta and M-Truncated Derivatives
The Fokas-Lenells equation (FLE) including the M-truncated derivative or beta derivative is examined. Using the modified mapping method, new elliptic, hyperbolic, rational, and trigonometric solutions are created. Also, we extend some previous results. Since the FLE has various applications in telecommunication modes, quantum field theory, quantum mechanics, and complex system theory, the solutions produced may be used to interpret a broad variety of important physical process. We present some of 3D and 2D diagrams to illustrate how M-truncated derivative and the beta derivative influence the exact solutions of the FLE. We demonstrate that when the derivative order decreases, the beta derivative pushes the surface to the left, whereas the M-truncated derivative pushes the surface to the right.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.