塞浦路斯涡旋系统水动力过程的三层模型

IF 2.2 3区 地球科学 Q2 OCEANOGRAPHY Ocean Dynamics Pub Date : 2023-11-16 DOI:10.1007/s10236-023-01584-6
Viktoriia M. Egorova, Mikhail A. Sokolovskiy, George Zodiatis
{"title":"塞浦路斯涡旋系统水动力过程的三层模型","authors":"Viktoriia M. Egorova, Mikhail A. Sokolovskiy, George Zodiatis","doi":"10.1007/s10236-023-01584-6","DOIUrl":null,"url":null,"abstract":"<p>A three-layer quasi-geostrophic model was developed to examine the topographic eddies generated around the Eratosthenes Seamount in the southeastern Levantine basin, particularly the dipolar vortex structure, consisting of the anticyclonic Cyprus Eddy and a smaller-scale cyclone. The numerical experiments were carried out using the Contour Dynamics Method, imposing an eastward flow with different inclinations and intensities along the western boundary of the model domain to imitate the Mid-Mediterranean Jet. The dual nature of topographic eddies was previously reported to be generated frequently in a homogeneous ocean approximation, but in the current study, the consideration of baroclinicity primarily simulated a single vortex attributed to the Cyprus Eddy with the small-scale cyclone to be generated occasionally. Also, it was demonstrated that the direction and intensity of the imposed eastward flow along the western boundary of the model domain are the main factors in the formation of the cyclonic vortex. The modeling results showed a qualitative agreement with the geostrophic patterns derived from in-situ observations in the wider sea area of the Eratosthenes Seamount.</p>","PeriodicalId":19387,"journal":{"name":"Ocean Dynamics","volume":"9 4","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2023-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A three-layer model of hydrodynamic processes in the Cyprus Eddy system\",\"authors\":\"Viktoriia M. Egorova, Mikhail A. Sokolovskiy, George Zodiatis\",\"doi\":\"10.1007/s10236-023-01584-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>A three-layer quasi-geostrophic model was developed to examine the topographic eddies generated around the Eratosthenes Seamount in the southeastern Levantine basin, particularly the dipolar vortex structure, consisting of the anticyclonic Cyprus Eddy and a smaller-scale cyclone. The numerical experiments were carried out using the Contour Dynamics Method, imposing an eastward flow with different inclinations and intensities along the western boundary of the model domain to imitate the Mid-Mediterranean Jet. The dual nature of topographic eddies was previously reported to be generated frequently in a homogeneous ocean approximation, but in the current study, the consideration of baroclinicity primarily simulated a single vortex attributed to the Cyprus Eddy with the small-scale cyclone to be generated occasionally. Also, it was demonstrated that the direction and intensity of the imposed eastward flow along the western boundary of the model domain are the main factors in the formation of the cyclonic vortex. The modeling results showed a qualitative agreement with the geostrophic patterns derived from in-situ observations in the wider sea area of the Eratosthenes Seamount.</p>\",\"PeriodicalId\":19387,\"journal\":{\"name\":\"Ocean Dynamics\",\"volume\":\"9 4\",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2023-11-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ocean Dynamics\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1007/s10236-023-01584-6\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"OCEANOGRAPHY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ocean Dynamics","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1007/s10236-023-01584-6","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OCEANOGRAPHY","Score":null,"Total":0}
引用次数: 0

摘要

建立了一种三层准地转模式,研究了黎凡特盆地东南部埃拉托色尼海山周围的地形涡旋,特别是由反气旋塞浦路斯涡旋和较小尺度气旋组成的偶极涡旋结构。采用等高线动力学方法进行数值实验,模拟地中海中部急流沿模型域西部边界形成不同倾角和强度的东向气流。地形涡旋的双重性质在以前的报道中经常在均匀的海洋近似中产生,但在目前的研究中,考虑斜压性主要模拟了归因于塞浦路斯涡旋的单一涡旋,偶尔会产生小规模气旋。结果表明,沿模式域西边界的强向东气流的方向和强度是气旋涡形成的主要因素。模拟结果与埃拉托色尼海山更广阔海域的地转模式在定性上一致。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A three-layer model of hydrodynamic processes in the Cyprus Eddy system

A three-layer quasi-geostrophic model was developed to examine the topographic eddies generated around the Eratosthenes Seamount in the southeastern Levantine basin, particularly the dipolar vortex structure, consisting of the anticyclonic Cyprus Eddy and a smaller-scale cyclone. The numerical experiments were carried out using the Contour Dynamics Method, imposing an eastward flow with different inclinations and intensities along the western boundary of the model domain to imitate the Mid-Mediterranean Jet. The dual nature of topographic eddies was previously reported to be generated frequently in a homogeneous ocean approximation, but in the current study, the consideration of baroclinicity primarily simulated a single vortex attributed to the Cyprus Eddy with the small-scale cyclone to be generated occasionally. Also, it was demonstrated that the direction and intensity of the imposed eastward flow along the western boundary of the model domain are the main factors in the formation of the cyclonic vortex. The modeling results showed a qualitative agreement with the geostrophic patterns derived from in-situ observations in the wider sea area of the Eratosthenes Seamount.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Ocean Dynamics
Ocean Dynamics 地学-海洋学
CiteScore
5.40
自引率
0.00%
发文量
37
审稿时长
6-12 weeks
期刊介绍: Ocean Dynamics is an international journal that aims to publish high-quality peer-reviewed articles in the following areas of research: Theoretical oceanography (new theoretical concepts that further system understanding with a strong view to applicability for operational or monitoring purposes); Computational oceanography (all aspects of ocean modeling and data analysis); Observational oceanography (new techniques or systematic approaches in measuring oceanic variables, including all aspects of monitoring the state of the ocean); Articles with an interdisciplinary character that encompass research in the fields of biological, chemical and physical oceanography are especially encouraged.
期刊最新文献
A new high-resolution Coastal Ice-Ocean Prediction System for the East Coast of Canada Improvement of drag coefficient parameterization of WAVEWATCH-III using remotely sensed products during tropical cyclones Surface ocean conditions of the Arabian Sea using two different wind forcings in the regional ocean modelling system setup Assessment of tidal current potential in the Amapá’s inner continental shelf (Eastern Amazonia - Brazil) Aggregation and transport of microplastics by a cold-core ring in the southern recirculation of the Kuroshio Extension: the role of mesoscale eddies on plastic debris distribution
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1