{"title":"开发基于pv的分布式发电机控制策略以增强微电网的频率调节","authors":"Hoang Minh Vu Nguyen, Trong Nghia Le","doi":"10.1155/2023/7317870","DOIUrl":null,"url":null,"abstract":"This paper presents a control strategy for a photovoltaic (PV)-based distributed generator (DG) to enhance the frequency regulation of a microgrid. A microgrid is a small-scale power system that integrates distributed energy sources and interconnected loads, which can operate independently or in parallel with the main grid. However, the high integration of DGs poses stability problems, particularly the frequency regulation under contingencies in the microgrid. For example, the shutdown of one generating unit or the reduction of system inertia owing to the high integration of converter-based DGs will increase the risk of instability of the microgrid and the main grid. Therefore, maintaining and increasing the frequency regulation capability is crucial in microgrid operation. This paper focuses on developing a controller for PV DG based on virtual inertia control combined with the conventional control method of a converter in order to regulate the microgrid frequency under contingency. The proposed control strategy for a PV-based DG is then verified through simulation of the 14-bus microgrid model using MATLAB/Simulink, showing regulation in frequency under island mode operation of the microgrid. In addition, comparisons between the original and proposed control strategy microgrid model are then carried out.","PeriodicalId":18319,"journal":{"name":"Mathematical Problems in Engineering","volume":"20 4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Developing Control Strategy for PV-Based Distributed Generator for Enhancing Frequency Regulation of Microgrid\",\"authors\":\"Hoang Minh Vu Nguyen, Trong Nghia Le\",\"doi\":\"10.1155/2023/7317870\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a control strategy for a photovoltaic (PV)-based distributed generator (DG) to enhance the frequency regulation of a microgrid. A microgrid is a small-scale power system that integrates distributed energy sources and interconnected loads, which can operate independently or in parallel with the main grid. However, the high integration of DGs poses stability problems, particularly the frequency regulation under contingencies in the microgrid. For example, the shutdown of one generating unit or the reduction of system inertia owing to the high integration of converter-based DGs will increase the risk of instability of the microgrid and the main grid. Therefore, maintaining and increasing the frequency regulation capability is crucial in microgrid operation. This paper focuses on developing a controller for PV DG based on virtual inertia control combined with the conventional control method of a converter in order to regulate the microgrid frequency under contingency. The proposed control strategy for a PV-based DG is then verified through simulation of the 14-bus microgrid model using MATLAB/Simulink, showing regulation in frequency under island mode operation of the microgrid. In addition, comparisons between the original and proposed control strategy microgrid model are then carried out.\",\"PeriodicalId\":18319,\"journal\":{\"name\":\"Mathematical Problems in Engineering\",\"volume\":\"20 4\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-11-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Problems in Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1155/2023/7317870\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Problems in Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1155/2023/7317870","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
Developing Control Strategy for PV-Based Distributed Generator for Enhancing Frequency Regulation of Microgrid
This paper presents a control strategy for a photovoltaic (PV)-based distributed generator (DG) to enhance the frequency regulation of a microgrid. A microgrid is a small-scale power system that integrates distributed energy sources and interconnected loads, which can operate independently or in parallel with the main grid. However, the high integration of DGs poses stability problems, particularly the frequency regulation under contingencies in the microgrid. For example, the shutdown of one generating unit or the reduction of system inertia owing to the high integration of converter-based DGs will increase the risk of instability of the microgrid and the main grid. Therefore, maintaining and increasing the frequency regulation capability is crucial in microgrid operation. This paper focuses on developing a controller for PV DG based on virtual inertia control combined with the conventional control method of a converter in order to regulate the microgrid frequency under contingency. The proposed control strategy for a PV-based DG is then verified through simulation of the 14-bus microgrid model using MATLAB/Simulink, showing regulation in frequency under island mode operation of the microgrid. In addition, comparisons between the original and proposed control strategy microgrid model are then carried out.
期刊介绍:
Mathematical Problems in Engineering is a broad-based journal which publishes articles of interest in all engineering disciplines. Mathematical Problems in Engineering publishes results of rigorous engineering research carried out using mathematical tools. Contributions containing formulations or results related to applications are also encouraged. The primary aim of Mathematical Problems in Engineering is rapid publication and dissemination of important mathematical work which has relevance to engineering. All areas of engineering are within the scope of the journal. In particular, aerospace engineering, bioengineering, chemical engineering, computer engineering, electrical engineering, industrial engineering and manufacturing systems, and mechanical engineering are of interest. Mathematical work of interest includes, but is not limited to, ordinary and partial differential equations, stochastic processes, calculus of variations, and nonlinear analysis.