{"title":"氧化锰改性硅藻土去除水溶液中铅(II)的研究","authors":"Huynh Thanh Danh, Nguyen Thi Truc Ly, Vanthan Nguyen, Dinh Quang Khieu, Pham Dinh Du","doi":"10.1155/2023/7744896","DOIUrl":null,"url":null,"abstract":"In the present work, natural diatomite modified with manganese oxide (MnO<sub>2</sub>) was prepared via direct redox reaction with KMnO<sub>4</sub> and HCl. The product was characterized by using X-ray diffraction, Fourier-transform infrared spectroscopy, scanning electron microscopy, transmission electron microscopy, energy-dispersive X-ray, and nitrogen adsorption-desorption isotherms. It was found that the nanorod manganese oxide was highly dispersed onto the diatomite porous matrix. The specific surface area of the obtained manganese oxide/diatomite (<span><svg height=\"14.9947pt\" style=\"vertical-align:-3.4033pt\" version=\"1.1\" viewbox=\"-0.0498162 -11.5914 33.954 14.9947\" width=\"33.954pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"></path></g><g transform=\"matrix(.0091,0,0,-0.0091,6.071,3.132)\"></path></g><g transform=\"matrix(.0091,0,0,-0.0091,11.385,3.132)\"></path></g><g transform=\"matrix(.0091,0,0,-0.0091,16.518,3.132)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,26.323,0)\"></path></g></svg><span></span><span><svg height=\"14.9947pt\" style=\"vertical-align:-3.4033pt\" version=\"1.1\" viewbox=\"37.536183799999996 -11.5914 58.534 14.9947\" width=\"58.534pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,37.586,0)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,43.826,0)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,50.066,0)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,53.03,0)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,61.445,0)\"></path></g><g transform=\"matrix(.0091,0,0,-0.0091,72.132,-5.741)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,79.254,0)\"></path></g><g transform=\"matrix(.0091,0,0,-0.0091,85.361,-5.741)\"></path></g><g transform=\"matrix(.0091,0,0,-0.0091,90.921,-5.741)\"></path></g></svg>)</span></span> is larger than that of natural diatomite (<span><svg height=\"14.9947pt\" style=\"vertical-align:-3.4033pt\" version=\"1.1\" viewbox=\"-0.0498162 -11.5914 33.954 14.9947\" width=\"33.954pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"><use xlink:href=\"#g113-84\"></use></g><g transform=\"matrix(.0091,0,0,-0.0091,6.071,3.132)\"><use xlink:href=\"#g190-67\"></use></g><g transform=\"matrix(.0091,0,0,-0.0091,11.385,3.132)\"><use xlink:href=\"#g190-70\"></use></g><g transform=\"matrix(.0091,0,0,-0.0091,16.518,3.132)\"><use xlink:href=\"#g190-85\"></use></g><g transform=\"matrix(.013,0,0,-0.013,26.323,0)\"><use xlink:href=\"#g117-34\"></use></g></svg><span></span><span><svg height=\"14.9947pt\" style=\"vertical-align:-3.4033pt\" version=\"1.1\" viewbox=\"37.536183799999996 -11.5914 58.534 14.9947\" width=\"58.534pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,37.586,0)\"><use xlink:href=\"#g113-54\"></use></g><g transform=\"matrix(.013,0,0,-0.013,43.826,0)\"><use xlink:href=\"#g113-54\"></use></g><g transform=\"matrix(.013,0,0,-0.013,50.066,0)\"><use xlink:href=\"#g113-47\"></use></g><g transform=\"matrix(.013,0,0,-0.013,53.03,0)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,61.446,0)\"><use xlink:href=\"#g190-110\"></use></g><g transform=\"matrix(.0091,0,0,-0.0091,72.132,-5.741)\"><use xlink:href=\"#g50-51\"></use></g><g transform=\"matrix(.013,0,0,-0.013,79.254,0)\"><use xlink:href=\"#g190-104\"></use></g><g transform=\"matrix(.0091,0,0,-0.0091,85.361,-5.741)\"><use xlink:href=\"#g54-33\"></use></g><g transform=\"matrix(.0091,0,0,-0.0091,90.921,-5.741)\"><use xlink:href=\"#g50-50\"></use></g></svg>).</span></span> It was utilized to remove Pb(II) in aqueous solutions. It exhibits an excellent Pb(II) adsorption capacity. The adsorption data fits well with the pseudo-second-order kinetics model, and the adsorption process is endothermic and spontaneous with an activation energy of 41.56 kJ mol<sup>−1</sup> and follows the Freundlich isotherm model. The Mn/diatomite adsorption capacity for Pb(II) is 81.42 mg g<sup>−1</sup>, calculated with the Langmuir model. In addition, the adsorption mechanism of Pb(II) onto Mn/diatomite is also addressed.","PeriodicalId":7315,"journal":{"name":"Adsorption Science & Technology","volume":"22 12","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2023-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Removal of Pb(II) from Aqueous Solutions with Manganese Oxide-Modified Diatomite\",\"authors\":\"Huynh Thanh Danh, Nguyen Thi Truc Ly, Vanthan Nguyen, Dinh Quang Khieu, Pham Dinh Du\",\"doi\":\"10.1155/2023/7744896\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the present work, natural diatomite modified with manganese oxide (MnO<sub>2</sub>) was prepared via direct redox reaction with KMnO<sub>4</sub> and HCl. The product was characterized by using X-ray diffraction, Fourier-transform infrared spectroscopy, scanning electron microscopy, transmission electron microscopy, energy-dispersive X-ray, and nitrogen adsorption-desorption isotherms. It was found that the nanorod manganese oxide was highly dispersed onto the diatomite porous matrix. The specific surface area of the obtained manganese oxide/diatomite (<span><svg height=\\\"14.9947pt\\\" style=\\\"vertical-align:-3.4033pt\\\" version=\\\"1.1\\\" viewbox=\\\"-0.0498162 -11.5914 33.954 14.9947\\\" width=\\\"33.954pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,0,0)\\\"></path></g><g transform=\\\"matrix(.0091,0,0,-0.0091,6.071,3.132)\\\"></path></g><g transform=\\\"matrix(.0091,0,0,-0.0091,11.385,3.132)\\\"></path></g><g transform=\\\"matrix(.0091,0,0,-0.0091,16.518,3.132)\\\"></path></g><g transform=\\\"matrix(.013,0,0,-0.013,26.323,0)\\\"></path></g></svg><span></span><span><svg height=\\\"14.9947pt\\\" style=\\\"vertical-align:-3.4033pt\\\" version=\\\"1.1\\\" viewbox=\\\"37.536183799999996 -11.5914 58.534 14.9947\\\" width=\\\"58.534pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,37.586,0)\\\"></path></g><g transform=\\\"matrix(.013,0,0,-0.013,43.826,0)\\\"></path></g><g transform=\\\"matrix(.013,0,0,-0.013,50.066,0)\\\"></path></g><g transform=\\\"matrix(.013,0,0,-0.013,53.03,0)\\\"></path></g><g transform=\\\"matrix(.013,0,0,-0.013,61.445,0)\\\"></path></g><g transform=\\\"matrix(.0091,0,0,-0.0091,72.132,-5.741)\\\"></path></g><g transform=\\\"matrix(.013,0,0,-0.013,79.254,0)\\\"></path></g><g transform=\\\"matrix(.0091,0,0,-0.0091,85.361,-5.741)\\\"></path></g><g transform=\\\"matrix(.0091,0,0,-0.0091,90.921,-5.741)\\\"></path></g></svg>)</span></span> is larger than that of natural diatomite (<span><svg height=\\\"14.9947pt\\\" style=\\\"vertical-align:-3.4033pt\\\" version=\\\"1.1\\\" viewbox=\\\"-0.0498162 -11.5914 33.954 14.9947\\\" width=\\\"33.954pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,0,0)\\\"><use xlink:href=\\\"#g113-84\\\"></use></g><g transform=\\\"matrix(.0091,0,0,-0.0091,6.071,3.132)\\\"><use xlink:href=\\\"#g190-67\\\"></use></g><g transform=\\\"matrix(.0091,0,0,-0.0091,11.385,3.132)\\\"><use xlink:href=\\\"#g190-70\\\"></use></g><g transform=\\\"matrix(.0091,0,0,-0.0091,16.518,3.132)\\\"><use xlink:href=\\\"#g190-85\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,26.323,0)\\\"><use xlink:href=\\\"#g117-34\\\"></use></g></svg><span></span><span><svg height=\\\"14.9947pt\\\" style=\\\"vertical-align:-3.4033pt\\\" version=\\\"1.1\\\" viewbox=\\\"37.536183799999996 -11.5914 58.534 14.9947\\\" width=\\\"58.534pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,37.586,0)\\\"><use xlink:href=\\\"#g113-54\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,43.826,0)\\\"><use xlink:href=\\\"#g113-54\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,50.066,0)\\\"><use xlink:href=\\\"#g113-47\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,53.03,0)\\\"></path></g><g transform=\\\"matrix(.013,0,0,-0.013,61.446,0)\\\"><use xlink:href=\\\"#g190-110\\\"></use></g><g transform=\\\"matrix(.0091,0,0,-0.0091,72.132,-5.741)\\\"><use xlink:href=\\\"#g50-51\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,79.254,0)\\\"><use xlink:href=\\\"#g190-104\\\"></use></g><g transform=\\\"matrix(.0091,0,0,-0.0091,85.361,-5.741)\\\"><use xlink:href=\\\"#g54-33\\\"></use></g><g transform=\\\"matrix(.0091,0,0,-0.0091,90.921,-5.741)\\\"><use xlink:href=\\\"#g50-50\\\"></use></g></svg>).</span></span> It was utilized to remove Pb(II) in aqueous solutions. It exhibits an excellent Pb(II) adsorption capacity. The adsorption data fits well with the pseudo-second-order kinetics model, and the adsorption process is endothermic and spontaneous with an activation energy of 41.56 kJ mol<sup>−1</sup> and follows the Freundlich isotherm model. The Mn/diatomite adsorption capacity for Pb(II) is 81.42 mg g<sup>−1</sup>, calculated with the Langmuir model. In addition, the adsorption mechanism of Pb(II) onto Mn/diatomite is also addressed.\",\"PeriodicalId\":7315,\"journal\":{\"name\":\"Adsorption Science & Technology\",\"volume\":\"22 12\",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2023-11-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Adsorption Science & Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1155/2023/7744896\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Adsorption Science & Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1155/2023/7744896","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
Removal of Pb(II) from Aqueous Solutions with Manganese Oxide-Modified Diatomite
In the present work, natural diatomite modified with manganese oxide (MnO2) was prepared via direct redox reaction with KMnO4 and HCl. The product was characterized by using X-ray diffraction, Fourier-transform infrared spectroscopy, scanning electron microscopy, transmission electron microscopy, energy-dispersive X-ray, and nitrogen adsorption-desorption isotherms. It was found that the nanorod manganese oxide was highly dispersed onto the diatomite porous matrix. The specific surface area of the obtained manganese oxide/diatomite () is larger than that of natural diatomite (). It was utilized to remove Pb(II) in aqueous solutions. It exhibits an excellent Pb(II) adsorption capacity. The adsorption data fits well with the pseudo-second-order kinetics model, and the adsorption process is endothermic and spontaneous with an activation energy of 41.56 kJ mol−1 and follows the Freundlich isotherm model. The Mn/diatomite adsorption capacity for Pb(II) is 81.42 mg g−1, calculated with the Langmuir model. In addition, the adsorption mechanism of Pb(II) onto Mn/diatomite is also addressed.
期刊介绍:
Adsorption Science & Technology is a peer-reviewed, open access journal devoted to studies of adsorption and desorption phenomena, which publishes original research papers and critical review articles, with occasional special issues relating to particular topics and symposia.