用模糊聚类回归逼近分组固定效应估计

IF 2.3 3区 经济学 Q2 ECONOMICS Journal of Applied Econometrics Pub Date : 2023-07-09 DOI:10.1002/jae.2997
Daniel J. Lewis, Davide Melcangi, Laura Pilossoph, Aidan Toner-Rodgers
{"title":"用模糊聚类回归逼近分组固定效应估计","authors":"Daniel J. Lewis,&nbsp;Davide Melcangi,&nbsp;Laura Pilossoph,&nbsp;Aidan Toner-Rodgers","doi":"10.1002/jae.2997","DOIUrl":null,"url":null,"abstract":"<p>We propose a new, computationally efficient way to approximate the “grouped fixed effects” (GFE) estimator of Bonhomme and Manresa (2015), which estimates grouped patterns of unobserved heterogeneity. To do so, we generalize the fuzzy C-means objective to regression settings. As the clustering exponent \n<math>\n <semantics>\n <mrow>\n <mi>m</mi>\n </mrow>\n <annotation>$$ m $$</annotation>\n </semantics></math> approaches 1, the fuzzy clustering objective converges to the GFE objective, which we recast as a standard generalized method of moments problem. We replicate the empirical results of Bonhomme and Manresa (2015) and show that our estimator delivers almost identical estimates. In simulations, we show that our approach offers improvements in terms of bias, classification accuracy, and computational speed.</p>","PeriodicalId":48363,"journal":{"name":"Journal of Applied Econometrics","volume":"38 7","pages":"1077-1084"},"PeriodicalIF":2.3000,"publicationDate":"2023-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jae.2997","citationCount":"0","resultStr":"{\"title\":\"Approximating grouped fixed effects estimation via fuzzy clustering regression\",\"authors\":\"Daniel J. Lewis,&nbsp;Davide Melcangi,&nbsp;Laura Pilossoph,&nbsp;Aidan Toner-Rodgers\",\"doi\":\"10.1002/jae.2997\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We propose a new, computationally efficient way to approximate the “grouped fixed effects” (GFE) estimator of Bonhomme and Manresa (2015), which estimates grouped patterns of unobserved heterogeneity. To do so, we generalize the fuzzy C-means objective to regression settings. As the clustering exponent \\n<math>\\n <semantics>\\n <mrow>\\n <mi>m</mi>\\n </mrow>\\n <annotation>$$ m $$</annotation>\\n </semantics></math> approaches 1, the fuzzy clustering objective converges to the GFE objective, which we recast as a standard generalized method of moments problem. We replicate the empirical results of Bonhomme and Manresa (2015) and show that our estimator delivers almost identical estimates. In simulations, we show that our approach offers improvements in terms of bias, classification accuracy, and computational speed.</p>\",\"PeriodicalId\":48363,\"journal\":{\"name\":\"Journal of Applied Econometrics\",\"volume\":\"38 7\",\"pages\":\"1077-1084\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2023-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jae.2997\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Econometrics\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jae.2997\",\"RegionNum\":3,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ECONOMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Econometrics","FirstCategoryId":"96","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jae.2997","RegionNum":3,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了一种新的,计算效率高的方法来近似Bonhomme和Manresa(2015)的“分组固定效应”(GFE)估计器,该估计器估计未观察到的异质性的分组模式。为此,我们将模糊c均值目标推广到回归设置。当聚类指数m $$ m $$趋近于1时,模糊聚类目标收敛到GFE目标,并将其重化为矩问题的标准广义方法。我们复制了Bonhomme和Manresa(2015)的实证结果,并表明我们的估计器提供了几乎相同的估计。在模拟中,我们证明了我们的方法在偏差、分类精度和计算速度方面提供了改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Approximating grouped fixed effects estimation via fuzzy clustering regression

We propose a new, computationally efficient way to approximate the “grouped fixed effects” (GFE) estimator of Bonhomme and Manresa (2015), which estimates grouped patterns of unobserved heterogeneity. To do so, we generalize the fuzzy C-means objective to regression settings. As the clustering exponent m $$ m $$ approaches 1, the fuzzy clustering objective converges to the GFE objective, which we recast as a standard generalized method of moments problem. We replicate the empirical results of Bonhomme and Manresa (2015) and show that our estimator delivers almost identical estimates. In simulations, we show that our approach offers improvements in terms of bias, classification accuracy, and computational speed.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.70
自引率
4.80%
发文量
63
期刊介绍: The Journal of Applied Econometrics is an international journal published bi-monthly, plus 1 additional issue (total 7 issues). It aims to publish articles of high quality dealing with the application of existing as well as new econometric techniques to a wide variety of problems in economics and related subjects, covering topics in measurement, estimation, testing, forecasting, and policy analysis. The emphasis is on the careful and rigorous application of econometric techniques and the appropriate interpretation of the results. The economic content of the articles is stressed. A special feature of the Journal is its emphasis on the replicability of results by other researchers. To achieve this aim, authors are expected to make available a complete set of the data used as well as any specialised computer programs employed through a readily accessible medium, preferably in a machine-readable form. The use of microcomputers in applied research and transferability of data is emphasised. The Journal also features occasional sections of short papers re-evaluating previously published papers. The intention of the Journal of Applied Econometrics is to provide an outlet for innovative, quantitative research in economics which cuts across areas of specialisation, involves transferable techniques, and is easily replicable by other researchers. Contributions that introduce statistical methods that are applicable to a variety of economic problems are actively encouraged. The Journal also aims to publish review and survey articles that make recent developments in the field of theoretical and applied econometrics more readily accessible to applied economists in general.
期刊最新文献
Issue Information Issue Information Optimal multi-action treatment allocation: A two-phase field experiment to boost immigrant naturalization Issue Information Heterogeneous autoregressions in short T panel data models
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1