平面蜗杆网状机器人WORMESH-II的侧绕运动

IF 1.5 Q3 INSTRUMENTS & INSTRUMENTATION ROBOMECH Journal Pub Date : 2023-11-18 DOI:10.1186/s40648-023-00263-x
Ganegoda V. C. Rasanga, Kengo Hiraishi, Ryuichi Hodoshima, Shinya Kotosaka
{"title":"平面蜗杆网状机器人WORMESH-II的侧绕运动","authors":"Ganegoda V. C. Rasanga, Kengo Hiraishi, Ryuichi Hodoshima, Shinya Kotosaka","doi":"10.1186/s40648-023-00263-x","DOIUrl":null,"url":null,"abstract":"WORMESH-II, which is the second prototype in the WORMESH series, is inspired by a flatten and soft-bodied fatworm, and its uniqueness is the use of multiple travelling waves for locomotion. In this paper, the sidewinding locomotions for WORMESH-II are talked about. This is because sidewinding is one of the most effective ways to traverse sandy terrain. The mathematical model of the sidewinding locomotion kinematics of WORMESH-II explains how synchronous multiple sidewinding waves can be used to control the movement of the robot effectively. Unlike WORMESH’s pedal-wave locomotion, sidewinding gaits allow the robot to be manoeuvred in any direction without changing the joint sequence. Relative to the wave propagation direction, velocity in the longitudinal direction is dependent on the vertical component of sidewinding travelling waves. Moreover, velocity in the transverse direction depends on the horizontal component of sidewinding travelling waves. The velocity in the longitudinal direction becomes zero when the phase shift of the travelling waves equals $$\\pi $$ rad. The angular velocity around the instantaneous centre of rotation depends on the wave amplitude of the horizontal component of the sidewinding travelling wave along the kinematic chains, and the turning radius is proportional to the amplitude gradient along the kinematic chains. The dynamic simulation of WORMESH-II and testing with the WORMESH-II prototype confirmed the proposed method, which was based on the metamathematical explanation of locomotion.","PeriodicalId":37462,"journal":{"name":"ROBOMECH Journal","volume":"38 2","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2023-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sidewinding locomotion of flatworm-like mesh robot WORMESH-II\",\"authors\":\"Ganegoda V. C. Rasanga, Kengo Hiraishi, Ryuichi Hodoshima, Shinya Kotosaka\",\"doi\":\"10.1186/s40648-023-00263-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"WORMESH-II, which is the second prototype in the WORMESH series, is inspired by a flatten and soft-bodied fatworm, and its uniqueness is the use of multiple travelling waves for locomotion. In this paper, the sidewinding locomotions for WORMESH-II are talked about. This is because sidewinding is one of the most effective ways to traverse sandy terrain. The mathematical model of the sidewinding locomotion kinematics of WORMESH-II explains how synchronous multiple sidewinding waves can be used to control the movement of the robot effectively. Unlike WORMESH’s pedal-wave locomotion, sidewinding gaits allow the robot to be manoeuvred in any direction without changing the joint sequence. Relative to the wave propagation direction, velocity in the longitudinal direction is dependent on the vertical component of sidewinding travelling waves. Moreover, velocity in the transverse direction depends on the horizontal component of sidewinding travelling waves. The velocity in the longitudinal direction becomes zero when the phase shift of the travelling waves equals $$\\\\pi $$ rad. The angular velocity around the instantaneous centre of rotation depends on the wave amplitude of the horizontal component of the sidewinding travelling wave along the kinematic chains, and the turning radius is proportional to the amplitude gradient along the kinematic chains. The dynamic simulation of WORMESH-II and testing with the WORMESH-II prototype confirmed the proposed method, which was based on the metamathematical explanation of locomotion.\",\"PeriodicalId\":37462,\"journal\":{\"name\":\"ROBOMECH Journal\",\"volume\":\"38 2\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2023-11-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ROBOMECH Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1186/s40648-023-00263-x\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"INSTRUMENTS & INSTRUMENTATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ROBOMECH Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s40648-023-00263-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 0

摘要

WORMESH-II, which is the second prototype in the WORMESH series, is inspired by a flatten and soft-bodied fatworm, and its uniqueness is the use of multiple travelling waves for locomotion. In this paper, the sidewinding locomotions for WORMESH-II are talked about. This is because sidewinding is one of the most effective ways to traverse sandy terrain. The mathematical model of the sidewinding locomotion kinematics of WORMESH-II explains how synchronous multiple sidewinding waves can be used to control the movement of the robot effectively. Unlike WORMESH’s pedal-wave locomotion, sidewinding gaits allow the robot to be manoeuvred in any direction without changing the joint sequence. Relative to the wave propagation direction, velocity in the longitudinal direction is dependent on the vertical component of sidewinding travelling waves. Moreover, velocity in the transverse direction depends on the horizontal component of sidewinding travelling waves. The velocity in the longitudinal direction becomes zero when the phase shift of the travelling waves equals $$\pi $$ rad. The angular velocity around the instantaneous centre of rotation depends on the wave amplitude of the horizontal component of the sidewinding travelling wave along the kinematic chains, and the turning radius is proportional to the amplitude gradient along the kinematic chains. The dynamic simulation of WORMESH-II and testing with the WORMESH-II prototype confirmed the proposed method, which was based on the metamathematical explanation of locomotion.
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Sidewinding locomotion of flatworm-like mesh robot WORMESH-II
WORMESH-II, which is the second prototype in the WORMESH series, is inspired by a flatten and soft-bodied fatworm, and its uniqueness is the use of multiple travelling waves for locomotion. In this paper, the sidewinding locomotions for WORMESH-II are talked about. This is because sidewinding is one of the most effective ways to traverse sandy terrain. The mathematical model of the sidewinding locomotion kinematics of WORMESH-II explains how synchronous multiple sidewinding waves can be used to control the movement of the robot effectively. Unlike WORMESH’s pedal-wave locomotion, sidewinding gaits allow the robot to be manoeuvred in any direction without changing the joint sequence. Relative to the wave propagation direction, velocity in the longitudinal direction is dependent on the vertical component of sidewinding travelling waves. Moreover, velocity in the transverse direction depends on the horizontal component of sidewinding travelling waves. The velocity in the longitudinal direction becomes zero when the phase shift of the travelling waves equals $$\pi $$ rad. The angular velocity around the instantaneous centre of rotation depends on the wave amplitude of the horizontal component of the sidewinding travelling wave along the kinematic chains, and the turning radius is proportional to the amplitude gradient along the kinematic chains. The dynamic simulation of WORMESH-II and testing with the WORMESH-II prototype confirmed the proposed method, which was based on the metamathematical explanation of locomotion.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ROBOMECH Journal
ROBOMECH Journal Mathematics-Control and Optimization
CiteScore
3.20
自引率
7.10%
发文量
21
审稿时长
13 weeks
期刊介绍: ROBOMECH Journal focuses on advanced technologies and practical applications in the field of Robotics and Mechatronics. This field is driven by the steadily growing research, development and consumer demand for robots and systems. Advanced robots have been working in medical and hazardous environments, such as space and the deep sea as well as in the manufacturing environment. The scope of the journal includes but is not limited to: 1. Modeling and design 2. System integration 3. Actuators and sensors 4. Intelligent control 5. Artificial intelligence 6. Machine learning 7. Robotics 8. Manufacturing 9. Motion control 10. Vibration and noise control 11. Micro/nano devices and optoelectronics systems 12. Automotive systems 13. Applications for extreme and/or hazardous environments 14. Other applications
期刊最新文献
Computer vision-based visualization and quantification of body skeletal movements for investigation of traditional skills: the production of Kizumi winnowing baskets Measuring unit for synchronously collecting air dose rate and measurement position Length control of a McKibben pneumatic actuator using a dynamic quantizer Interactive driving of electrostatic film actuator by proximity motion of human body Development and flight-test verification of two-dimensional rotational low-airspeed sensor for small helicopters
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1