废石在膏体充填体中的自然混合特性试验研究

IF 2.7 3区 工程技术 Q3 ENVIRONMENTAL SCIENCES International Journal of Mining Reclamation and Environment Pub Date : 2023-07-21 DOI:10.1080/17480930.2023.2235847
Yuyu Zhang, Li Li
{"title":"废石在膏体充填体中的自然混合特性试验研究","authors":"Yuyu Zhang, Li Li","doi":"10.1080/17480930.2023.2235847","DOIUrl":null,"url":null,"abstract":"<p><b>ABSTRACT</b></p><p>Underground produced waste rocks (WR) are typically hoisted and stored on the ground surface as WR piles. The practice requires energy consumption for transporting the WR from underground to ground surface and generates additional operation costs. An alternative practice is to directly pour the WR into mine stopes being filled with paste backfill. However, the natural mixing behaviour of WR poured in a paste backfill has never been studied. To fill this gap, a series of physical model tests have been performed for the first time in the laboratory to understand the natural mixing behaviour of WR and paste backfill. The definitions of solids content by mass of WR and mixing degree are for the first time proposed to quantitatively evaluate the mixing behaviour between the poured WR and paste backfill. The test results show that the penetration of waste rocks into paste backfill and mixing degree can be improved through the use of paste backfill of low solids content, large particle sizes of waste rocks and/or through the increase of falling height of poured waste rocks. The proposed definitions can be used as good indicators to quantitatively evaluate the mixing quality of the natural mixture.</p>","PeriodicalId":49180,"journal":{"name":"International Journal of Mining Reclamation and Environment","volume":"46 1","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2023-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Experimental study on the natural mixing behaviour of waste rocks poured in a paste backfill\",\"authors\":\"Yuyu Zhang, Li Li\",\"doi\":\"10.1080/17480930.2023.2235847\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><b>ABSTRACT</b></p><p>Underground produced waste rocks (WR) are typically hoisted and stored on the ground surface as WR piles. The practice requires energy consumption for transporting the WR from underground to ground surface and generates additional operation costs. An alternative practice is to directly pour the WR into mine stopes being filled with paste backfill. However, the natural mixing behaviour of WR poured in a paste backfill has never been studied. To fill this gap, a series of physical model tests have been performed for the first time in the laboratory to understand the natural mixing behaviour of WR and paste backfill. The definitions of solids content by mass of WR and mixing degree are for the first time proposed to quantitatively evaluate the mixing behaviour between the poured WR and paste backfill. The test results show that the penetration of waste rocks into paste backfill and mixing degree can be improved through the use of paste backfill of low solids content, large particle sizes of waste rocks and/or through the increase of falling height of poured waste rocks. The proposed definitions can be used as good indicators to quantitatively evaluate the mixing quality of the natural mixture.</p>\",\"PeriodicalId\":49180,\"journal\":{\"name\":\"International Journal of Mining Reclamation and Environment\",\"volume\":\"46 1\",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2023-07-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Mining Reclamation and Environment\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/17480930.2023.2235847\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Mining Reclamation and Environment","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/17480930.2023.2235847","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

摘要地下废石通常被吊装成废石桩储存在地面上。这种做法需要将水水从地下运输到地面的能源消耗,并产生额外的运营成本。另一种做法是直接将水冷液倒入采场进行膏体充填。然而,在膏体充填体中灌入水凝土的自然混合特性尚未得到研究。为了填补这一空白,首次在实验室进行了一系列物理模型试验,以了解WR和膏体充填体的自然混合行为。首次提出了水回填体固体质量含量和混合度的定义,定量评价了水回填体与膏体的混合特性。试验结果表明,采用低固含量、大粒径废石的膏体充填体和(或)提高废石倾倒高度,可以提高废石对膏体充填体的渗透程度和混合程度。提出的定义可以作为定量评价天然混合物混合质量的良好指标。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Experimental study on the natural mixing behaviour of waste rocks poured in a paste backfill

ABSTRACT

Underground produced waste rocks (WR) are typically hoisted and stored on the ground surface as WR piles. The practice requires energy consumption for transporting the WR from underground to ground surface and generates additional operation costs. An alternative practice is to directly pour the WR into mine stopes being filled with paste backfill. However, the natural mixing behaviour of WR poured in a paste backfill has never been studied. To fill this gap, a series of physical model tests have been performed for the first time in the laboratory to understand the natural mixing behaviour of WR and paste backfill. The definitions of solids content by mass of WR and mixing degree are for the first time proposed to quantitatively evaluate the mixing behaviour between the poured WR and paste backfill. The test results show that the penetration of waste rocks into paste backfill and mixing degree can be improved through the use of paste backfill of low solids content, large particle sizes of waste rocks and/or through the increase of falling height of poured waste rocks. The proposed definitions can be used as good indicators to quantitatively evaluate the mixing quality of the natural mixture.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Mining Reclamation and Environment
International Journal of Mining Reclamation and Environment ENVIRONMENTAL SCIENCES-MINING & MINERAL PROCESSING
CiteScore
5.70
自引率
8.30%
发文量
30
审稿时长
>12 weeks
期刊介绍: The International Journal of Mining, Reclamation and Environment published research on mining and environmental technology engineering relating to metalliferous deposits, coal, oil sands, and industrial minerals. We welcome environmental mining research papers that explore: -Mining environmental impact assessment and permitting- Mining and processing technologies- Mining waste management and waste minimization practices in mining- Mine site closure- Mining decommissioning and reclamation- Acid mine drainage. The International Journal of Mining, Reclamation and Environment welcomes mining research papers that explore: -Design of surface and underground mines (economics, geotechnical, production scheduling, ventilation)- Mine planning and optimization- Mining geostatics- Mine drilling and blasting technologies- Mining material handling systems- Mine equipment
期刊最新文献
An effective strategy for stacking and reclaiming iron ore piles Mechanical behaviour and instability mechanism of sandstones with impact tendency under different loading paths Sustainable open pit mining through GHG-conscious short-term production scheduling Experimental study on mechanical aging properties of self‑swelling anchorage bolt under chemical corrosion Characterisation of the Pinus banksiana root system on analogues of a cover with capillary barrier effects
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1