{"title":"线性边值问题中不确定数据误差的神经网络量化","authors":"Vilho Halonen, Ilkka Pölönen","doi":"10.1137/22m1538855","DOIUrl":null,"url":null,"abstract":"SIAM/ASA Journal on Uncertainty Quantification, Volume 11, Issue 4, Page 1258-1277, December 2023. <br/> Abstract. Quantifying errors caused by indeterminacy in data is currently computationally expensive even in relatively simple PDE problems. Efficient methods could prove very useful in, for example, scientific experiments done with simulations. In this paper, we create and test neural networks which quantify uncertainty errors in the case of a linear one-dimensional boundary value problem. Training and testing data is generated numerically. We created three training datasets and three testing datasets and trained four neural networks with differing architectures. The performance of the neural networks is compared to known analytical bounds of errors caused by uncertain data. We find that the trained neural networks accurately approximate the exact error quantity in almost all cases and the neural network outputs are always between the analytical upper and lower bounds. The results of this paper show that after a suitable dataset is used for training even a relatively compact neural network can successfully predict quantitative effects generated by uncertain data. If these methods can be extended to more difficult PDE problems they could potentially have a multitude of real-world applications.","PeriodicalId":56064,"journal":{"name":"Siam-Asa Journal on Uncertainty Quantification","volume":"38 6","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2023-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quantification of Errors Generated by Uncertain Data in a Linear Boundary Value Problem Using Neural Networks\",\"authors\":\"Vilho Halonen, Ilkka Pölönen\",\"doi\":\"10.1137/22m1538855\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"SIAM/ASA Journal on Uncertainty Quantification, Volume 11, Issue 4, Page 1258-1277, December 2023. <br/> Abstract. Quantifying errors caused by indeterminacy in data is currently computationally expensive even in relatively simple PDE problems. Efficient methods could prove very useful in, for example, scientific experiments done with simulations. In this paper, we create and test neural networks which quantify uncertainty errors in the case of a linear one-dimensional boundary value problem. Training and testing data is generated numerically. We created three training datasets and three testing datasets and trained four neural networks with differing architectures. The performance of the neural networks is compared to known analytical bounds of errors caused by uncertain data. We find that the trained neural networks accurately approximate the exact error quantity in almost all cases and the neural network outputs are always between the analytical upper and lower bounds. The results of this paper show that after a suitable dataset is used for training even a relatively compact neural network can successfully predict quantitative effects generated by uncertain data. If these methods can be extended to more difficult PDE problems they could potentially have a multitude of real-world applications.\",\"PeriodicalId\":56064,\"journal\":{\"name\":\"Siam-Asa Journal on Uncertainty Quantification\",\"volume\":\"38 6\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2023-11-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Siam-Asa Journal on Uncertainty Quantification\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1137/22m1538855\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Siam-Asa Journal on Uncertainty Quantification","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1137/22m1538855","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Quantification of Errors Generated by Uncertain Data in a Linear Boundary Value Problem Using Neural Networks
SIAM/ASA Journal on Uncertainty Quantification, Volume 11, Issue 4, Page 1258-1277, December 2023. Abstract. Quantifying errors caused by indeterminacy in data is currently computationally expensive even in relatively simple PDE problems. Efficient methods could prove very useful in, for example, scientific experiments done with simulations. In this paper, we create and test neural networks which quantify uncertainty errors in the case of a linear one-dimensional boundary value problem. Training and testing data is generated numerically. We created three training datasets and three testing datasets and trained four neural networks with differing architectures. The performance of the neural networks is compared to known analytical bounds of errors caused by uncertain data. We find that the trained neural networks accurately approximate the exact error quantity in almost all cases and the neural network outputs are always between the analytical upper and lower bounds. The results of this paper show that after a suitable dataset is used for training even a relatively compact neural network can successfully predict quantitative effects generated by uncertain data. If these methods can be extended to more difficult PDE problems they could potentially have a multitude of real-world applications.
期刊介绍:
SIAM/ASA Journal on Uncertainty Quantification (JUQ) publishes research articles presenting significant mathematical, statistical, algorithmic, and application advances in uncertainty quantification, defined as the interface of complex modeling of processes and data, especially characterizations of the uncertainties inherent in the use of such models. The journal also focuses on related fields such as sensitivity analysis, model validation, model calibration, data assimilation, and code verification. The journal also solicits papers describing new ideas that could lead to significant progress in methodology for uncertainty quantification as well as review articles on particular aspects. The journal is dedicated to nurturing synergistic interactions between the mathematical, statistical, computational, and applications communities involved in uncertainty quantification and related areas. JUQ is jointly offered by SIAM and the American Statistical Association.