高斯过程插值中平滑参数估计的渐近界

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS ACS Applied Bio Materials Pub Date : 2023-11-27 DOI:10.1137/22m149288x
Toni Karvonen
{"title":"高斯过程插值中平滑参数估计的渐近界","authors":"Toni Karvonen","doi":"10.1137/22m149288x","DOIUrl":null,"url":null,"abstract":"SIAM/ASA Journal on Uncertainty Quantification, Volume 11, Issue 4, Page 1225-1257, December 2023. <br/> Abstract. It is common to model a deterministic response function, such as the output of a computer experiment, as a Gaussian process with a Matérn covariance kernel. The smoothness parameter of a Matérn kernel determines many important properties of the model in the large data limit, including the rate of convergence of the conditional mean to the response function. We prove that the maximum likelihood estimate of the smoothness parameter cannot asymptotically undersmooth the truth when the data are obtained on a fixed bounded subset of [math]. That is, if the data-generating response function has Sobolev smoothness [math], then the smoothness parameter estimate cannot be asymptotically less than [math]. The lower bound is sharp. Additionally, we show that maximum likelihood estimation recovers the true smoothness for a class of compactly supported self-similar functions. For cross-validation we prove an asymptotic lower bound [math], which, however, is unlikely to be sharp. The results are based on approximation theory in Sobolev spaces and some general theorems that restrict the set of values that the parameter estimators can take.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Asymptotic Bounds for Smoothness Parameter Estimates in Gaussian Process Interpolation\",\"authors\":\"Toni Karvonen\",\"doi\":\"10.1137/22m149288x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"SIAM/ASA Journal on Uncertainty Quantification, Volume 11, Issue 4, Page 1225-1257, December 2023. <br/> Abstract. It is common to model a deterministic response function, such as the output of a computer experiment, as a Gaussian process with a Matérn covariance kernel. The smoothness parameter of a Matérn kernel determines many important properties of the model in the large data limit, including the rate of convergence of the conditional mean to the response function. We prove that the maximum likelihood estimate of the smoothness parameter cannot asymptotically undersmooth the truth when the data are obtained on a fixed bounded subset of [math]. That is, if the data-generating response function has Sobolev smoothness [math], then the smoothness parameter estimate cannot be asymptotically less than [math]. The lower bound is sharp. Additionally, we show that maximum likelihood estimation recovers the true smoothness for a class of compactly supported self-similar functions. For cross-validation we prove an asymptotic lower bound [math], which, however, is unlikely to be sharp. The results are based on approximation theory in Sobolev spaces and some general theorems that restrict the set of values that the parameter estimators can take.\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2023-11-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1137/22m149288x\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1137/22m149288x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 6

摘要

SIAM/ASA不确定度量化杂志,第11卷,第4期,1225-1257页,2023年12月。摘要。通常将确定性响应函数(例如计算机实验的输出)建模为具有mat协方差核的高斯过程。matn核的平滑参数决定了模型在大数据极限下的许多重要性质,包括条件均值对响应函数的收敛速度。我们证明了当数据在[math]的固定有界子集上获得时,平滑参数的极大似然估计不能渐近地低于真值。即,如果数据生成响应函数具有Sobolev平滑性[math],则平滑性参数估计不可能渐近小于[math]。下界很明显。此外,我们证明了极大似然估计恢复了一类紧支持的自相似函数的真实平滑性。对于交叉验证,我们证明了一个渐近的下界[数学],然而,它不太可能是尖锐的。结果是基于Sobolev空间中的近似理论和一些限制参数估计量取值集的一般定理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Asymptotic Bounds for Smoothness Parameter Estimates in Gaussian Process Interpolation
SIAM/ASA Journal on Uncertainty Quantification, Volume 11, Issue 4, Page 1225-1257, December 2023.
Abstract. It is common to model a deterministic response function, such as the output of a computer experiment, as a Gaussian process with a Matérn covariance kernel. The smoothness parameter of a Matérn kernel determines many important properties of the model in the large data limit, including the rate of convergence of the conditional mean to the response function. We prove that the maximum likelihood estimate of the smoothness parameter cannot asymptotically undersmooth the truth when the data are obtained on a fixed bounded subset of [math]. That is, if the data-generating response function has Sobolev smoothness [math], then the smoothness parameter estimate cannot be asymptotically less than [math]. The lower bound is sharp. Additionally, we show that maximum likelihood estimation recovers the true smoothness for a class of compactly supported self-similar functions. For cross-validation we prove an asymptotic lower bound [math], which, however, is unlikely to be sharp. The results are based on approximation theory in Sobolev spaces and some general theorems that restrict the set of values that the parameter estimators can take.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
期刊最新文献
A Systematic Review of Sleep Disturbance in Idiopathic Intracranial Hypertension. Advancing Patient Education in Idiopathic Intracranial Hypertension: The Promise of Large Language Models. Anti-Myelin-Associated Glycoprotein Neuropathy: Recent Developments. Approach to Managing the Initial Presentation of Multiple Sclerosis: A Worldwide Practice Survey. Association Between LACE+ Index Risk Category and 90-Day Mortality After Stroke.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1