{"title":"消极选择——自动订单执行的新性能度量","authors":"Miles Kumaresan, Nataša Krejić, Sanja Lončar","doi":"10.1186/s13362-021-00102-x","DOIUrl":null,"url":null,"abstract":"Automated Order Execution is the dominant way of trading at stock markets. Performance of numerous execution algorithms is measured through slippage from some benchmark. But measuring true slippage in algorithmic execution is a difficult task since the execution as well as benchmarks are function of market activity. In this paper, we propose a new performance measure for execution algorithms. The measure, named Negative Selection, takes a posterior look at the trading window and allows us to determine what would have been the optimal order placement if we knew in advance, before the actual trading, the complete market information during the trading window. We define the performance measure as the difference between the hypothetical optimal trading position and the actual execution. This difference is calculated taking into account all prices and traded quantities within the considered time window. Thus, we are capturing the impact caused by our own trading as a cost that affects all trades. Properties of Negative Selection, which make it well defined and objective are discussed. Some empirical results on real trade data are presented.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2021-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Negative selection—a new performance measure for automated order execution\",\"authors\":\"Miles Kumaresan, Nataša Krejić, Sanja Lončar\",\"doi\":\"10.1186/s13362-021-00102-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Automated Order Execution is the dominant way of trading at stock markets. Performance of numerous execution algorithms is measured through slippage from some benchmark. But measuring true slippage in algorithmic execution is a difficult task since the execution as well as benchmarks are function of market activity. In this paper, we propose a new performance measure for execution algorithms. The measure, named Negative Selection, takes a posterior look at the trading window and allows us to determine what would have been the optimal order placement if we knew in advance, before the actual trading, the complete market information during the trading window. We define the performance measure as the difference between the hypothetical optimal trading position and the actual execution. This difference is calculated taking into account all prices and traded quantities within the considered time window. Thus, we are capturing the impact caused by our own trading as a cost that affects all trades. Properties of Negative Selection, which make it well defined and objective are discussed. Some empirical results on real trade data are presented.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2021-03-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1186/s13362-021-00102-x\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s13362-021-00102-x","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Negative selection—a new performance measure for automated order execution
Automated Order Execution is the dominant way of trading at stock markets. Performance of numerous execution algorithms is measured through slippage from some benchmark. But measuring true slippage in algorithmic execution is a difficult task since the execution as well as benchmarks are function of market activity. In this paper, we propose a new performance measure for execution algorithms. The measure, named Negative Selection, takes a posterior look at the trading window and allows us to determine what would have been the optimal order placement if we knew in advance, before the actual trading, the complete market information during the trading window. We define the performance measure as the difference between the hypothetical optimal trading position and the actual execution. This difference is calculated taking into account all prices and traded quantities within the considered time window. Thus, we are capturing the impact caused by our own trading as a cost that affects all trades. Properties of Negative Selection, which make it well defined and objective are discussed. Some empirical results on real trade data are presented.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.