CRISPR/Cas9介导的南瓜植物烯去饱和酶基因编辑

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Accounts of Chemical Research Pub Date : 2023-11-20 DOI:10.1007/s13562-023-00866-w
Shallu Thakur, Geoffrey Meru
{"title":"CRISPR/Cas9介导的南瓜植物烯去饱和酶基因编辑","authors":"Shallu Thakur, Geoffrey Meru","doi":"10.1007/s13562-023-00866-w","DOIUrl":null,"url":null,"abstract":"<p>Gene editing using the Clustered Regularly Interspaced Short Palindromic Repeats/CRISPR-associated 9 (CRISPR/Cas9) system has become an important biotechnological tool for studying gene function and improving crops. In the present study, the potential of the system was assessed for squash (<i>Cucurbita pepo</i> subspecies <i>pepo</i>) by targeting phytoene desaturase (<i>PDS</i>) gene using the particle bombardment method. The recombinant pHSE401 vector, carrying two sgRNAs (<i>gRNA1</i> and <i>gRNA2</i>) specific to the <i>PDS</i> homolog (<i>Cp4.1LG08g06310, CpPDS</i>) under the control of <i>Arabidopsis</i> U6 promoter and the Cas9 protein was developed and bombarded into cotyledonary node explants of squash cv. Black Beauty. The transformation efficiency of 4.5% was observed and all the transformants exhibited albino/bleached phenotype. The <i>CpPDS</i> knockout system generated easily detectable bleached/albino explants within 6–8 weeks. The albino phenotype was confirmed through Sanger sequencing which detected several deletion mutations (single, two and three bp deletion) within the <i>CpPDS-gRNA1</i> target. However, no mutations were found within the <i>CpPDS-gRNA2</i> target. This study demonstrated CRISPR/Cas9 as a viable tool for gene editing in squash and provides a platform for the modification of economically important traits in the crop.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"CRISPR/Cas9 mediated editing of phytoene desaturase gene in squash\",\"authors\":\"Shallu Thakur, Geoffrey Meru\",\"doi\":\"10.1007/s13562-023-00866-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Gene editing using the Clustered Regularly Interspaced Short Palindromic Repeats/CRISPR-associated 9 (CRISPR/Cas9) system has become an important biotechnological tool for studying gene function and improving crops. In the present study, the potential of the system was assessed for squash (<i>Cucurbita pepo</i> subspecies <i>pepo</i>) by targeting phytoene desaturase (<i>PDS</i>) gene using the particle bombardment method. The recombinant pHSE401 vector, carrying two sgRNAs (<i>gRNA1</i> and <i>gRNA2</i>) specific to the <i>PDS</i> homolog (<i>Cp4.1LG08g06310, CpPDS</i>) under the control of <i>Arabidopsis</i> U6 promoter and the Cas9 protein was developed and bombarded into cotyledonary node explants of squash cv. Black Beauty. The transformation efficiency of 4.5% was observed and all the transformants exhibited albino/bleached phenotype. The <i>CpPDS</i> knockout system generated easily detectable bleached/albino explants within 6–8 weeks. The albino phenotype was confirmed through Sanger sequencing which detected several deletion mutations (single, two and three bp deletion) within the <i>CpPDS-gRNA1</i> target. However, no mutations were found within the <i>CpPDS-gRNA2</i> target. This study demonstrated CRISPR/Cas9 as a viable tool for gene editing in squash and provides a platform for the modification of economically important traits in the crop.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-11-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s13562-023-00866-w\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s13562-023-00866-w","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1

摘要

利用聚类规则间隔短回文重复序列/CRISPR-associated 9 (CRISPR/Cas9)系统进行基因编辑已成为研究基因功能和改良作物的重要生物技术工具。本研究利用粒子轰击法,以植物烯去饱和酶(PDS)基因为靶点,对该系统在南瓜(Cucurbita pepo亚种pepo)中的应用潜力进行了评价。重组pHSE401载体在拟南芥U6启动子和Cas9蛋白的调控下,携带PDS同源物(Cp4.1LG08g06310, CpPDS)特异性的两个sgrna (gRNA1和gRNA2),并将其培养到南瓜子叶结外植体中。黑色的美。观察到转化效率为4.5%,所有转化子均呈现白化/漂白表型。CpPDS敲除系统在6-8周内产生易于检测的漂白/白化外植体。通过Sanger测序,在CpPDS-gRNA1靶点内检测到多个缺失突变(单bp、2 bp和3 bp缺失),证实了白化表型。然而,在CpPDS-gRNA2靶点内未发现突变。这项研究证明了CRISPR/Cas9是一种可行的南瓜基因编辑工具,并为修改这种作物的重要经济性状提供了平台。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
CRISPR/Cas9 mediated editing of phytoene desaturase gene in squash

Gene editing using the Clustered Regularly Interspaced Short Palindromic Repeats/CRISPR-associated 9 (CRISPR/Cas9) system has become an important biotechnological tool for studying gene function and improving crops. In the present study, the potential of the system was assessed for squash (Cucurbita pepo subspecies pepo) by targeting phytoene desaturase (PDS) gene using the particle bombardment method. The recombinant pHSE401 vector, carrying two sgRNAs (gRNA1 and gRNA2) specific to the PDS homolog (Cp4.1LG08g06310, CpPDS) under the control of Arabidopsis U6 promoter and the Cas9 protein was developed and bombarded into cotyledonary node explants of squash cv. Black Beauty. The transformation efficiency of 4.5% was observed and all the transformants exhibited albino/bleached phenotype. The CpPDS knockout system generated easily detectable bleached/albino explants within 6–8 weeks. The albino phenotype was confirmed through Sanger sequencing which detected several deletion mutations (single, two and three bp deletion) within the CpPDS-gRNA1 target. However, no mutations were found within the CpPDS-gRNA2 target. This study demonstrated CRISPR/Cas9 as a viable tool for gene editing in squash and provides a platform for the modification of economically important traits in the crop.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
期刊最新文献
Management of Cholesteatoma: Hearing Rehabilitation. Congenital Cholesteatoma. Evaluation of Cholesteatoma. Management of Cholesteatoma: Extension Beyond Middle Ear/Mastoid. Recidivism and Recurrence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1