{"title":"顶级双开发粒子群优化","authors":"Chan Huang, Jinhao Yu, Junhui Yang","doi":"10.1007/s12293-023-00403-1","DOIUrl":null,"url":null,"abstract":"<p>This paper proposes top-level dual-exploitation particle swarm optimization (TLDEPSO), which aims to use the evolutionary experience between particles better and enhance the convergence performance of the algorithm. In TLDEPSO, the population is divided into top-level particles and ordinary particles according to fitness, and each iteration is divided into two stages to be executed. For the first stage, a particle modification method based on gene editing technology is proposed and applied to top-level particles to improve the search direction of the population and explore the problem space better. For other ordinary particles in the population, the learning strategy of the canonical ring neighborhood topology PSO is used to update the velocity and the position to maintain the diversity of the population. For the second stage, a top-level neighborhood exploration mechanism is proposed for top-level particles to accelerate the algorithm’s convergence. In addition, an adaptive dynamic adjustment mechanism for the parameters of acceleration coefficient, inertia coefficient and the number of top-level particles is proposed to balance better the global exploration and local exploitation capabilities of the algorithm. On the latest CEC2022 test benchmark, comparison and statistical analysis with seven advanced PSO variants and three CEC competition top algorithms demonstrate TLDEPSO’s superior performance in solving functional problems with different fitness landscapes.</p>","PeriodicalId":48780,"journal":{"name":"Memetic Computing","volume":"13 3","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2023-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Top-level dual exploitation particle swarm optimization\",\"authors\":\"Chan Huang, Jinhao Yu, Junhui Yang\",\"doi\":\"10.1007/s12293-023-00403-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This paper proposes top-level dual-exploitation particle swarm optimization (TLDEPSO), which aims to use the evolutionary experience between particles better and enhance the convergence performance of the algorithm. In TLDEPSO, the population is divided into top-level particles and ordinary particles according to fitness, and each iteration is divided into two stages to be executed. For the first stage, a particle modification method based on gene editing technology is proposed and applied to top-level particles to improve the search direction of the population and explore the problem space better. For other ordinary particles in the population, the learning strategy of the canonical ring neighborhood topology PSO is used to update the velocity and the position to maintain the diversity of the population. For the second stage, a top-level neighborhood exploration mechanism is proposed for top-level particles to accelerate the algorithm’s convergence. In addition, an adaptive dynamic adjustment mechanism for the parameters of acceleration coefficient, inertia coefficient and the number of top-level particles is proposed to balance better the global exploration and local exploitation capabilities of the algorithm. On the latest CEC2022 test benchmark, comparison and statistical analysis with seven advanced PSO variants and three CEC competition top algorithms demonstrate TLDEPSO’s superior performance in solving functional problems with different fitness landscapes.</p>\",\"PeriodicalId\":48780,\"journal\":{\"name\":\"Memetic Computing\",\"volume\":\"13 3\",\"pages\":\"\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2023-11-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Memetic Computing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s12293-023-00403-1\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Memetic Computing","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s12293-023-00403-1","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
This paper proposes top-level dual-exploitation particle swarm optimization (TLDEPSO), which aims to use the evolutionary experience between particles better and enhance the convergence performance of the algorithm. In TLDEPSO, the population is divided into top-level particles and ordinary particles according to fitness, and each iteration is divided into two stages to be executed. For the first stage, a particle modification method based on gene editing technology is proposed and applied to top-level particles to improve the search direction of the population and explore the problem space better. For other ordinary particles in the population, the learning strategy of the canonical ring neighborhood topology PSO is used to update the velocity and the position to maintain the diversity of the population. For the second stage, a top-level neighborhood exploration mechanism is proposed for top-level particles to accelerate the algorithm’s convergence. In addition, an adaptive dynamic adjustment mechanism for the parameters of acceleration coefficient, inertia coefficient and the number of top-level particles is proposed to balance better the global exploration and local exploitation capabilities of the algorithm. On the latest CEC2022 test benchmark, comparison and statistical analysis with seven advanced PSO variants and three CEC competition top algorithms demonstrate TLDEPSO’s superior performance in solving functional problems with different fitness landscapes.
Memetic ComputingCOMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE-OPERATIONS RESEARCH & MANAGEMENT SCIENCE
CiteScore
6.80
自引率
12.80%
发文量
31
期刊介绍:
Memes have been defined as basic units of transferrable information that reside in the brain and are propagated across populations through the process of imitation. From an algorithmic point of view, memes have come to be regarded as building-blocks of prior knowledge, expressed in arbitrary computational representations (e.g., local search heuristics, fuzzy rules, neural models, etc.), that have been acquired through experience by a human or machine, and can be imitated (i.e., reused) across problems.
The Memetic Computing journal welcomes papers incorporating the aforementioned socio-cultural notion of memes into artificial systems, with particular emphasis on enhancing the efficacy of computational and artificial intelligence techniques for search, optimization, and machine learning through explicit prior knowledge incorporation. The goal of the journal is to thus be an outlet for high quality theoretical and applied research on hybrid, knowledge-driven computational approaches that may be characterized under any of the following categories of memetics:
Type 1: General-purpose algorithms integrated with human-crafted heuristics that capture some form of prior domain knowledge; e.g., traditional memetic algorithms hybridizing evolutionary global search with a problem-specific local search.
Type 2: Algorithms with the ability to automatically select, adapt, and reuse the most appropriate heuristics from a diverse pool of available choices; e.g., learning a mapping between global search operators and multiple local search schemes, given an optimization problem at hand.
Type 3: Algorithms that autonomously learn with experience, adaptively reusing data and/or machine learning models drawn from related problems as prior knowledge in new target tasks of interest; examples include, but are not limited to, transfer learning and optimization, multi-task learning and optimization, or any other multi-X evolutionary learning and optimization methodologies.