稻壳和车前草皮厌氧共消化生产沼气:基质混合比例、消化质量和动力学分析的研究

IF 1.5 4区 工程技术 Q3 ENGINEERING, CHEMICAL Brazilian Journal of Chemical Engineering Pub Date : 2023-11-27 DOI:10.1007/s43153-023-00415-x
Akinola David Olugbemide, Labunmi Lajide, Blaz Likozar, Augustine Ighodaro, Ojo Cyprian Bella-Omunagbe, Ikhazuagbe Hilary Ifijen
{"title":"稻壳和车前草皮厌氧共消化生产沼气:基质混合比例、消化质量和动力学分析的研究","authors":"Akinola David Olugbemide, Labunmi Lajide, Blaz Likozar, Augustine Ighodaro, Ojo Cyprian Bella-Omunagbe, Ikhazuagbe Hilary Ifijen","doi":"10.1007/s43153-023-00415-x","DOIUrl":null,"url":null,"abstract":"<p>The increasing accumulation of agricultural residues like rice husk (RH) and plantain peels (PP) poses environmental challenges, necessitating efficient waste management strategies. The study explores the potential of anaerobic co-digestion (AcoD) as a sustainable solution, specifically investigating its capacity for biogas generation from these agricultural residues. The primary objective is to determine the optimal substrate mixing ratios (SMRs) to maximize biogas yield. In-depth examination revealed that the highest biogas production reached a significant 2880 mL with a blend of 60% RH and 40% PP (RH60PP40). Additionally, the 80% RH and 20% PP composite (RH80PP20) demonstrated a substantial yield of 1996 mL. However, when plantain peels were used as the major substrate, biogas outputs decreased to 1250 mL and 173 mL for RH40PP60 and RH20PP80, respectively. Synergistic indexes (SI), measuring compatibility, reported values of 1.36 and 1.96 for the most promising samples, underscoring their optimal blending for biogas enhancement. From the perspective of digestate quality, plantain peel-based digestate (PP100D) stood out as a leading biofertilizer candidate due to its enriched nutrient profile. For the kinetic analysis, the logistic model was identified as the most predictive, outperforming the exponential and modified Gompertz models in mapping biogas production dynamics. Conclusively, the study accentuates that strategically optimized anaerobic co-digestion (AcoD) of RH and PP not only amplifies biogas outputs but also presents a viable, sustainable avenue for managing the environmental concerns associated with unchecked agricultural residue accumulation.</p>","PeriodicalId":9194,"journal":{"name":"Brazilian Journal of Chemical Engineering","volume":"58 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2023-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Biogas production through anaerobic co-digestion of rice husk and plantain peels: investigation of substrate mixing ratios, digestate quality, and kinetic analysis\",\"authors\":\"Akinola David Olugbemide, Labunmi Lajide, Blaz Likozar, Augustine Ighodaro, Ojo Cyprian Bella-Omunagbe, Ikhazuagbe Hilary Ifijen\",\"doi\":\"10.1007/s43153-023-00415-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The increasing accumulation of agricultural residues like rice husk (RH) and plantain peels (PP) poses environmental challenges, necessitating efficient waste management strategies. The study explores the potential of anaerobic co-digestion (AcoD) as a sustainable solution, specifically investigating its capacity for biogas generation from these agricultural residues. The primary objective is to determine the optimal substrate mixing ratios (SMRs) to maximize biogas yield. In-depth examination revealed that the highest biogas production reached a significant 2880 mL with a blend of 60% RH and 40% PP (RH60PP40). Additionally, the 80% RH and 20% PP composite (RH80PP20) demonstrated a substantial yield of 1996 mL. However, when plantain peels were used as the major substrate, biogas outputs decreased to 1250 mL and 173 mL for RH40PP60 and RH20PP80, respectively. Synergistic indexes (SI), measuring compatibility, reported values of 1.36 and 1.96 for the most promising samples, underscoring their optimal blending for biogas enhancement. From the perspective of digestate quality, plantain peel-based digestate (PP100D) stood out as a leading biofertilizer candidate due to its enriched nutrient profile. For the kinetic analysis, the logistic model was identified as the most predictive, outperforming the exponential and modified Gompertz models in mapping biogas production dynamics. Conclusively, the study accentuates that strategically optimized anaerobic co-digestion (AcoD) of RH and PP not only amplifies biogas outputs but also presents a viable, sustainable avenue for managing the environmental concerns associated with unchecked agricultural residue accumulation.</p>\",\"PeriodicalId\":9194,\"journal\":{\"name\":\"Brazilian Journal of Chemical Engineering\",\"volume\":\"58 1\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2023-11-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Brazilian Journal of Chemical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s43153-023-00415-x\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brazilian Journal of Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s43153-023-00415-x","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

摘要

稻壳(RH)和大蕉皮(PP)等农业残留物的不断积累带来了环境挑战,需要有效的废物管理策略。该研究探索了厌氧共消化(AcoD)作为一种可持续解决方案的潜力,特别是研究了它从这些农业残留物中产生沼气的能力。主要目标是确定最佳底物混合比(SMRs),以最大限度地提高沼气产量。深入研究表明,在60% RH和40% PP (RH60PP40)的混合物中,最高的沼气产量达到2880 mL。此外,80% RH和20% PP复合材料(RH80PP20)的产气量为1996 mL。然而,当使用车前草皮作为主要底物时,RH40PP60和RH20PP80的沼气产量分别降至1250 mL和173 mL。测定相容性的协同指数(Synergistic index, SI)报告了最有希望的样品的1.36和1.96的值,强调了它们对沼气增强的最佳混合。从消化液质量的角度来看,车前草皮消化液(PP100D)因其丰富的营养成分而成为生物肥料的主要候选。对于动力学分析,logistic模型被认为是最具预测性的,在绘制沼气生产动态方面优于指数模型和修正的Gompertz模型。最后,该研究强调,策略性优化RH和PP的厌氧共消化(AcoD)不仅增加了沼气产量,而且为管理与不受控制的农业残留物积累相关的环境问题提供了可行的、可持续的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Biogas production through anaerobic co-digestion of rice husk and plantain peels: investigation of substrate mixing ratios, digestate quality, and kinetic analysis

The increasing accumulation of agricultural residues like rice husk (RH) and plantain peels (PP) poses environmental challenges, necessitating efficient waste management strategies. The study explores the potential of anaerobic co-digestion (AcoD) as a sustainable solution, specifically investigating its capacity for biogas generation from these agricultural residues. The primary objective is to determine the optimal substrate mixing ratios (SMRs) to maximize biogas yield. In-depth examination revealed that the highest biogas production reached a significant 2880 mL with a blend of 60% RH and 40% PP (RH60PP40). Additionally, the 80% RH and 20% PP composite (RH80PP20) demonstrated a substantial yield of 1996 mL. However, when plantain peels were used as the major substrate, biogas outputs decreased to 1250 mL and 173 mL for RH40PP60 and RH20PP80, respectively. Synergistic indexes (SI), measuring compatibility, reported values of 1.36 and 1.96 for the most promising samples, underscoring their optimal blending for biogas enhancement. From the perspective of digestate quality, plantain peel-based digestate (PP100D) stood out as a leading biofertilizer candidate due to its enriched nutrient profile. For the kinetic analysis, the logistic model was identified as the most predictive, outperforming the exponential and modified Gompertz models in mapping biogas production dynamics. Conclusively, the study accentuates that strategically optimized anaerobic co-digestion (AcoD) of RH and PP not only amplifies biogas outputs but also presents a viable, sustainable avenue for managing the environmental concerns associated with unchecked agricultural residue accumulation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Brazilian Journal of Chemical Engineering
Brazilian Journal of Chemical Engineering 工程技术-工程:化工
CiteScore
2.50
自引率
0.00%
发文量
84
审稿时长
6.8 months
期刊介绍: The Brazilian Journal of Chemical Engineering is a quarterly publication of the Associação Brasileira de Engenharia Química (Brazilian Society of Chemical Engineering - ABEQ) aiming at publishing papers reporting on basic and applied research and innovation in the field of chemical engineering and related areas.
期刊最新文献
C4 hydrocarbons to value-added chemicals over Keggin-type heteropolyacids: structure-properties, reaction parameters, and mechanisms Utilization of blue light-emitting diodes in Ensifer meliloti cultivation for enhanced production of antioxidant biopolymers Correlation of the solubility of isoniazid in some aqueous cosolvent mixtures using different mathematical models Doehlert matrix-based optimization of degradation of Rhodamine B in a swirling flow photolytic reactor operated in recirculation mode Application of DieselB10 formulations with short-chain alcohols in diesel cycle engines: phase equilibrium, physicochemical and thermodynamic properties and power curves
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1