块滤波器和特征解的锐多数化型聚类鲁棒界

IF 1.5 2区 数学 Q2 MATHEMATICS, APPLIED SIAM Journal on Matrix Analysis and Applications Pub Date : 2023-12-05 DOI:10.1137/23m1551729
Ming Zhou, Merico Argentati, Andrew V. Knyazev, Klaus Neymeyr
{"title":"块滤波器和特征解的锐多数化型聚类鲁棒界","authors":"Ming Zhou, Merico Argentati, Andrew V. Knyazev, Klaus Neymeyr","doi":"10.1137/23m1551729","DOIUrl":null,"url":null,"abstract":"SIAM Journal on Matrix Analysis and Applications, Volume 44, Issue 4, Page 1852-1878, December 2023. <br/> Abstract. Convergence analysis of block iterative solvers for Hermitian eigenvalue problems and closely related research on properties of matrix-based signal filters are challenging and are attracting increased attention due to their recent applications in spectral data clustering and graph-based signal processing. We combine majorization-based techniques pioneered for investigating the Rayleigh–Ritz method in [A. V. Knyazev and M. E. Argentati, SIAM J. Matrix Anal. Appl., 31 (2010), pp. 1521–1537] with tools of classical analysis of the block power method by Rutishauser [Numer. Math., 13 (1969), pp. 4–13] to derive sharp convergence rate bounds of abstract block iterations, wherein tuples of tangents of principal angles or relative errors of Ritz values are bounded using majorization in terms of arranged partial sums and tuples of convergence factors. Our novel bounds are robust in the presence of clusters of eigenvalues, improve previous results, and are applicable to most known block iterative solvers and matrix-based filters, e.g., to block power, Chebyshev, and Lanczos methods combined with polynomial filtering. The sharpness of our bounds is fundamental, implying that the bounds cannot be improved without further assumptions.","PeriodicalId":49538,"journal":{"name":"SIAM Journal on Matrix Analysis and Applications","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2023-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sharp Majorization-Type Cluster Robust Bounds for Block Filters and Eigensolvers\",\"authors\":\"Ming Zhou, Merico Argentati, Andrew V. Knyazev, Klaus Neymeyr\",\"doi\":\"10.1137/23m1551729\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"SIAM Journal on Matrix Analysis and Applications, Volume 44, Issue 4, Page 1852-1878, December 2023. <br/> Abstract. Convergence analysis of block iterative solvers for Hermitian eigenvalue problems and closely related research on properties of matrix-based signal filters are challenging and are attracting increased attention due to their recent applications in spectral data clustering and graph-based signal processing. We combine majorization-based techniques pioneered for investigating the Rayleigh–Ritz method in [A. V. Knyazev and M. E. Argentati, SIAM J. Matrix Anal. Appl., 31 (2010), pp. 1521–1537] with tools of classical analysis of the block power method by Rutishauser [Numer. Math., 13 (1969), pp. 4–13] to derive sharp convergence rate bounds of abstract block iterations, wherein tuples of tangents of principal angles or relative errors of Ritz values are bounded using majorization in terms of arranged partial sums and tuples of convergence factors. Our novel bounds are robust in the presence of clusters of eigenvalues, improve previous results, and are applicable to most known block iterative solvers and matrix-based filters, e.g., to block power, Chebyshev, and Lanczos methods combined with polynomial filtering. The sharpness of our bounds is fundamental, implying that the bounds cannot be improved without further assumptions.\",\"PeriodicalId\":49538,\"journal\":{\"name\":\"SIAM Journal on Matrix Analysis and Applications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2023-12-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SIAM Journal on Matrix Analysis and Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1137/23m1551729\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Journal on Matrix Analysis and Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/23m1551729","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

SIAM矩阵分析与应用杂志,第44卷,第4期,第1852-1878页,2023年12月。摘要。厄米特征值问题的块迭代解的收敛性分析和基于矩阵的信号滤波器性质的密切相关研究具有挑战性,并且由于它们最近在频谱数据聚类和基于图的信号处理中的应用而受到越来越多的关注。我们将基于多数的技术结合在一起,用于研究[A]中的瑞利-里兹方法。刘建军,刘建军,刘建军。达成。基于Rutishauser的区块幂方法的经典分析工具[j] .计算机学报,31 (2010),pp. 1521-1537。数学。[j], 13 (1969), pp 4-13]来推导抽象块迭代的尖锐收敛速率界,其中主角的切线元组或里兹值的相对误差使用排序部分和和收敛因子元组的多数化来有界。我们的新边界在存在特征值簇的情况下具有鲁棒性,改进了以前的结果,并且适用于大多数已知的块迭代求解器和基于矩阵的滤波器,例如,块功率,Chebyshev和Lanczos方法与多项式滤波相结合。我们的边界的清晰度是基本的,这意味着如果没有进一步的假设,边界就不能得到改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Sharp Majorization-Type Cluster Robust Bounds for Block Filters and Eigensolvers
SIAM Journal on Matrix Analysis and Applications, Volume 44, Issue 4, Page 1852-1878, December 2023.
Abstract. Convergence analysis of block iterative solvers for Hermitian eigenvalue problems and closely related research on properties of matrix-based signal filters are challenging and are attracting increased attention due to their recent applications in spectral data clustering and graph-based signal processing. We combine majorization-based techniques pioneered for investigating the Rayleigh–Ritz method in [A. V. Knyazev and M. E. Argentati, SIAM J. Matrix Anal. Appl., 31 (2010), pp. 1521–1537] with tools of classical analysis of the block power method by Rutishauser [Numer. Math., 13 (1969), pp. 4–13] to derive sharp convergence rate bounds of abstract block iterations, wherein tuples of tangents of principal angles or relative errors of Ritz values are bounded using majorization in terms of arranged partial sums and tuples of convergence factors. Our novel bounds are robust in the presence of clusters of eigenvalues, improve previous results, and are applicable to most known block iterative solvers and matrix-based filters, e.g., to block power, Chebyshev, and Lanczos methods combined with polynomial filtering. The sharpness of our bounds is fundamental, implying that the bounds cannot be improved without further assumptions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.90
自引率
6.70%
发文量
61
审稿时长
6-12 weeks
期刊介绍: The SIAM Journal on Matrix Analysis and Applications contains research articles in matrix analysis and its applications and papers of interest to the numerical linear algebra community. Applications include such areas as signal processing, systems and control theory, statistics, Markov chains, and mathematical biology. Also contains papers that are of a theoretical nature but have a possible impact on applications.
期刊最新文献
On Substochastic Inverse Eigenvalue Problems with the Corresponding Eigenvector Constraints Low-Rank Plus Diagonal Approximations for Riccati-Like Matrix Differential Equations Multichannel Frequency Estimation with Constant Amplitude via Convex Structured Low-Rank Approximation Kronecker Product of Tensors and Hypergraphs: Structure and Dynamics Growth Factors of Orthogonal Matrices and Local Behavior of Gaussian Elimination with Partial and Complete Pivoting
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1