{"title":"石墨烯可饱和吸收剂在光纤激光器中的应用","authors":"Xi Peng, Yixin Yan","doi":"10.1186/s41476-021-00163-w","DOIUrl":null,"url":null,"abstract":"<div><p>Two-dimensional materials are widely used in a variety of fields, such as medical treatment, industrial preparation, machining, etc. In this review, we have made a detailed description of the development of fiber lasers as well as the evolution of two-dimensional materials, especially graphene. In addition, we describe the optical properties of graphene and its preparations, for instance, chemical exfoliatio, liquid phase exfoliation, electrochemical technique, chemical vapor deposition, supercritical fluid exfoliation, and thermal exfoliation. Meanwhile, we also summarized several types of graphene saturable absorbers like all fiber, D-shaped, and optical deposition. Furthermore, we summarize the optical applications of fiber lasers based on graphene. Finally, we also take a look at the future perspectives of graphene and discuss the future applications of graphene in the field of optics. It is note worth that future fiber lasers will use more heterostructures or gas-solid mixtures to prepare saturable absorbers.</p></div>","PeriodicalId":674,"journal":{"name":"Journal of the European Optical Society-Rapid Publications","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2021-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://jeos.springeropen.com/counter/pdf/10.1186/s41476-021-00163-w","citationCount":"0","resultStr":"{\"title\":\"Graphene saturable absorbers applications in fiber lasers\",\"authors\":\"Xi Peng, Yixin Yan\",\"doi\":\"10.1186/s41476-021-00163-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Two-dimensional materials are widely used in a variety of fields, such as medical treatment, industrial preparation, machining, etc. In this review, we have made a detailed description of the development of fiber lasers as well as the evolution of two-dimensional materials, especially graphene. In addition, we describe the optical properties of graphene and its preparations, for instance, chemical exfoliatio, liquid phase exfoliation, electrochemical technique, chemical vapor deposition, supercritical fluid exfoliation, and thermal exfoliation. Meanwhile, we also summarized several types of graphene saturable absorbers like all fiber, D-shaped, and optical deposition. Furthermore, we summarize the optical applications of fiber lasers based on graphene. Finally, we also take a look at the future perspectives of graphene and discuss the future applications of graphene in the field of optics. It is note worth that future fiber lasers will use more heterostructures or gas-solid mixtures to prepare saturable absorbers.</p></div>\",\"PeriodicalId\":674,\"journal\":{\"name\":\"Journal of the European Optical Society-Rapid Publications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2021-08-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://jeos.springeropen.com/counter/pdf/10.1186/s41476-021-00163-w\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the European Optical Society-Rapid Publications\",\"FirstCategoryId\":\"4\",\"ListUrlMain\":\"https://link.springer.com/article/10.1186/s41476-021-00163-w\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the European Optical Society-Rapid Publications","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1186/s41476-021-00163-w","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"OPTICS","Score":null,"Total":0}
Graphene saturable absorbers applications in fiber lasers
Two-dimensional materials are widely used in a variety of fields, such as medical treatment, industrial preparation, machining, etc. In this review, we have made a detailed description of the development of fiber lasers as well as the evolution of two-dimensional materials, especially graphene. In addition, we describe the optical properties of graphene and its preparations, for instance, chemical exfoliatio, liquid phase exfoliation, electrochemical technique, chemical vapor deposition, supercritical fluid exfoliation, and thermal exfoliation. Meanwhile, we also summarized several types of graphene saturable absorbers like all fiber, D-shaped, and optical deposition. Furthermore, we summarize the optical applications of fiber lasers based on graphene. Finally, we also take a look at the future perspectives of graphene and discuss the future applications of graphene in the field of optics. It is note worth that future fiber lasers will use more heterostructures or gas-solid mixtures to prepare saturable absorbers.
期刊介绍:
Rapid progress in optics and photonics has broadened its application enormously into many branches, including information and communication technology, security, sensing, bio- and medical sciences, healthcare and chemistry.
Recent achievements in other sciences have allowed continual discovery of new natural mysteries and formulation of challenging goals for optics that require further development of modern concepts and running fundamental research.
The Journal of the European Optical Society – Rapid Publications (JEOS:RP) aims to tackle all of the aforementioned points in the form of prompt, scientific, high-quality communications that report on the latest findings. It presents emerging technologies and outlining strategic goals in optics and photonics.
The journal covers both fundamental and applied topics, including but not limited to:
Classical and quantum optics
Light/matter interaction
Optical communication
Micro- and nanooptics
Nonlinear optical phenomena
Optical materials
Optical metrology
Optical spectroscopy
Colour research
Nano and metamaterials
Modern photonics technology
Optical engineering, design and instrumentation
Optical applications in bio-physics and medicine
Interdisciplinary fields using photonics, such as in energy, climate change and cultural heritage
The journal aims to provide readers with recent and important achievements in optics/photonics and, as its name suggests, it strives for the shortest possible publication time.