M. Fatehi, B. Yaghoobi, M. Payan, I. Hosseinpour, R. Jamshidi Chenari
{"title":"软粘土上土工格栅加筋颗粒填料地基组合承载力研究","authors":"M. Fatehi, B. Yaghoobi, M. Payan, I. Hosseinpour, R. Jamshidi Chenari","doi":"10.1680/jgein.23.00049","DOIUrl":null,"url":null,"abstract":"The current study investigates the ultimate bearing capacity of obliquely/eccentrically loaded shallow strip foundations resting on a geogrid-reinforced granular fill with limited thickness over a very soft to soft clay layer. To this end, the lower bound theorems of the finite element limit analysis (FELA) and second-order cone programming (SOCP) are effectively exploited to simulate the underlying clay deposit, geogrid layer, and granular fill along with the inclined/eccentric loading exerted on the overlying footing. The accuracy of the adopted formulations was rigorously examined through several comparisons with the results of a well-established analytical approach in the literature. A comprehensive parametric study is then conducted to properly examine the influences of the geosynthetic layer characteristics and soft clay properties on the overall bearing capacity and failure envelope of the strip footing subjected to wide ranges of inclined and eccentric combined loadings. The results show that placement of a geogrid-reinforced granular fill layer over the soft clayey soil significantly increases the bearing capacity of the shallow foundation. The ultimate tensile strength of the reinforcement layer and the cohesion of the underlying very soft to soft clay deposit were also observed to have considerable effects on the size of failure envelopes.","PeriodicalId":12616,"journal":{"name":"Geosynthetics International","volume":"618 ","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2023-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Combined bearing capacity of footings on geogrid-reinforced granular fill over soft clay\",\"authors\":\"M. Fatehi, B. Yaghoobi, M. Payan, I. Hosseinpour, R. Jamshidi Chenari\",\"doi\":\"10.1680/jgein.23.00049\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The current study investigates the ultimate bearing capacity of obliquely/eccentrically loaded shallow strip foundations resting on a geogrid-reinforced granular fill with limited thickness over a very soft to soft clay layer. To this end, the lower bound theorems of the finite element limit analysis (FELA) and second-order cone programming (SOCP) are effectively exploited to simulate the underlying clay deposit, geogrid layer, and granular fill along with the inclined/eccentric loading exerted on the overlying footing. The accuracy of the adopted formulations was rigorously examined through several comparisons with the results of a well-established analytical approach in the literature. A comprehensive parametric study is then conducted to properly examine the influences of the geosynthetic layer characteristics and soft clay properties on the overall bearing capacity and failure envelope of the strip footing subjected to wide ranges of inclined and eccentric combined loadings. The results show that placement of a geogrid-reinforced granular fill layer over the soft clayey soil significantly increases the bearing capacity of the shallow foundation. The ultimate tensile strength of the reinforcement layer and the cohesion of the underlying very soft to soft clay deposit were also observed to have considerable effects on the size of failure envelopes.\",\"PeriodicalId\":12616,\"journal\":{\"name\":\"Geosynthetics International\",\"volume\":\"618 \",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2023-11-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geosynthetics International\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1680/jgein.23.00049\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, GEOLOGICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geosynthetics International","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1680/jgein.23.00049","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
Combined bearing capacity of footings on geogrid-reinforced granular fill over soft clay
The current study investigates the ultimate bearing capacity of obliquely/eccentrically loaded shallow strip foundations resting on a geogrid-reinforced granular fill with limited thickness over a very soft to soft clay layer. To this end, the lower bound theorems of the finite element limit analysis (FELA) and second-order cone programming (SOCP) are effectively exploited to simulate the underlying clay deposit, geogrid layer, and granular fill along with the inclined/eccentric loading exerted on the overlying footing. The accuracy of the adopted formulations was rigorously examined through several comparisons with the results of a well-established analytical approach in the literature. A comprehensive parametric study is then conducted to properly examine the influences of the geosynthetic layer characteristics and soft clay properties on the overall bearing capacity and failure envelope of the strip footing subjected to wide ranges of inclined and eccentric combined loadings. The results show that placement of a geogrid-reinforced granular fill layer over the soft clayey soil significantly increases the bearing capacity of the shallow foundation. The ultimate tensile strength of the reinforcement layer and the cohesion of the underlying very soft to soft clay deposit were also observed to have considerable effects on the size of failure envelopes.
期刊介绍:
An online only, rapid publication journal, Geosynthetics International – an official journal of the International Geosynthetics Society (IGS) – publishes the best information on current geosynthetics technology in research, design innovation, new materials and construction practice.
Topics covered
The whole of geosynthetic materials (including natural fibre products) such as research, behaviour, performance analysis, testing, design, construction methods, case histories and field experience. Geosynthetics International is received by all members of the IGS as part of their membership, and is published in e-only format six times a year.