累积信息生成函数与广义基尼函数

Pub Date : 2023-11-27 DOI:10.1007/s00184-023-00931-3
Marco Capaldo, Antonio Di Crescenzo, Alessandra Meoli
{"title":"累积信息生成函数与广义基尼函数","authors":"Marco Capaldo, Antonio Di Crescenzo, Alessandra Meoli","doi":"10.1007/s00184-023-00931-3","DOIUrl":null,"url":null,"abstract":"<p>We introduce and study the cumulative information generating function, which provides a unifying mathematical tool suitable to deal with classical and fractional entropies based on the cumulative distribution function and on the survival function. Specifically, after establishing its main properties and some bounds, we show that it is a variability measure itself that extends the Gini mean semi-difference. We also provide (i) an extension of such a measure, based on distortion functions, and (ii) a weighted version based on a mixture distribution. Furthermore, we explore some connections with the reliability of <i>k</i>-out-of-<i>n</i> systems and with stress–strength models for multi-component systems. Also, we address the problem of extending the cumulative information generating function to higher dimensions.\n</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cumulative information generating function and generalized Gini functions\",\"authors\":\"Marco Capaldo, Antonio Di Crescenzo, Alessandra Meoli\",\"doi\":\"10.1007/s00184-023-00931-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We introduce and study the cumulative information generating function, which provides a unifying mathematical tool suitable to deal with classical and fractional entropies based on the cumulative distribution function and on the survival function. Specifically, after establishing its main properties and some bounds, we show that it is a variability measure itself that extends the Gini mean semi-difference. We also provide (i) an extension of such a measure, based on distortion functions, and (ii) a weighted version based on a mixture distribution. Furthermore, we explore some connections with the reliability of <i>k</i>-out-of-<i>n</i> systems and with stress–strength models for multi-component systems. Also, we address the problem of extending the cumulative information generating function to higher dimensions.\\n</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-11-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00184-023-00931-3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00184-023-00931-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在累积分布函数和生存函数的基础上,引入并研究了累积信息生成函数,为处理经典熵和分数熵提供了一种统一的数学工具。具体来说,在确定了它的主要性质和一些界限之后,我们表明它是一个可变性测量本身,它扩展了基尼平均半差。我们还提供(i)基于失真函数的这种度量的扩展,以及(ii)基于混合分布的加权版本。此外,我们探讨了与k- of-n系统的可靠性和多部件系统的应力-强度模型的一些联系。此外,我们还解决了将累积信息生成函数扩展到更高维度的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
Cumulative information generating function and generalized Gini functions

We introduce and study the cumulative information generating function, which provides a unifying mathematical tool suitable to deal with classical and fractional entropies based on the cumulative distribution function and on the survival function. Specifically, after establishing its main properties and some bounds, we show that it is a variability measure itself that extends the Gini mean semi-difference. We also provide (i) an extension of such a measure, based on distortion functions, and (ii) a weighted version based on a mixture distribution. Furthermore, we explore some connections with the reliability of k-out-of-n systems and with stress–strength models for multi-component systems. Also, we address the problem of extending the cumulative information generating function to higher dimensions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1