{"title":"条件均值依赖的局部影响检测","authors":"Tingyu Lai, Zhongzhan Zhang","doi":"10.1007/s40304-023-00365-3","DOIUrl":null,"url":null,"abstract":"<p>This article is focused on the problem to measure and test the conditional mean dependence of a response variable on a predictor variable. A local influence detection approach is developed combining with the martingale difference divergence (MDD) metric, and an efficient wild bootstrap implementation is given. The obtained new metric of the conditional mean dependence holds the merits of MDD, while it is more sensitive than the original one, and leads to a powerful test to nonlinear relationships. It is shown by simulations that the proposed test can achieve higher power for general conditional mean dependence relationships even in high-dimensional settings. Theoretical asymptotic properties of the local influence test statistic are given, and a real data analysis is also presented for further illustration. The localization idea could be combined with other conditional mean dependence metrics.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Local Influence Detection of Conditional Mean Dependence\",\"authors\":\"Tingyu Lai, Zhongzhan Zhang\",\"doi\":\"10.1007/s40304-023-00365-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This article is focused on the problem to measure and test the conditional mean dependence of a response variable on a predictor variable. A local influence detection approach is developed combining with the martingale difference divergence (MDD) metric, and an efficient wild bootstrap implementation is given. The obtained new metric of the conditional mean dependence holds the merits of MDD, while it is more sensitive than the original one, and leads to a powerful test to nonlinear relationships. It is shown by simulations that the proposed test can achieve higher power for general conditional mean dependence relationships even in high-dimensional settings. Theoretical asymptotic properties of the local influence test statistic are given, and a real data analysis is also presented for further illustration. The localization idea could be combined with other conditional mean dependence metrics.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-11-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s40304-023-00365-3\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s40304-023-00365-3","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Local Influence Detection of Conditional Mean Dependence
This article is focused on the problem to measure and test the conditional mean dependence of a response variable on a predictor variable. A local influence detection approach is developed combining with the martingale difference divergence (MDD) metric, and an efficient wild bootstrap implementation is given. The obtained new metric of the conditional mean dependence holds the merits of MDD, while it is more sensitive than the original one, and leads to a powerful test to nonlinear relationships. It is shown by simulations that the proposed test can achieve higher power for general conditional mean dependence relationships even in high-dimensional settings. Theoretical asymptotic properties of the local influence test statistic are given, and a real data analysis is also presented for further illustration. The localization idea could be combined with other conditional mean dependence metrics.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.