{"title":"多元尾依赖与局部随机优势","authors":"Karl Friedrich Siburg, Christopher Strothmann","doi":"10.1016/j.jmva.2023.105267","DOIUrl":null,"url":null,"abstract":"<div><p><span>Given two multivariate copulas<span> with corresponding tail dependence functions, we investigate the relation between a natural tail dependence ordering and the order of local stochastic dominance. We show that, although the two orderings are not equivalent in general, they coincide for various important classes of copulas, among them all multivariate </span></span>Archimedean<span> and bivariate lower extreme value copulas. We illustrate the relevance of our results by an implication to risk management.</span></p></div>","PeriodicalId":16431,"journal":{"name":"Journal of Multivariate Analysis","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2023-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multivariate tail dependence and local stochastic dominance\",\"authors\":\"Karl Friedrich Siburg, Christopher Strothmann\",\"doi\":\"10.1016/j.jmva.2023.105267\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span>Given two multivariate copulas<span> with corresponding tail dependence functions, we investigate the relation between a natural tail dependence ordering and the order of local stochastic dominance. We show that, although the two orderings are not equivalent in general, they coincide for various important classes of copulas, among them all multivariate </span></span>Archimedean<span> and bivariate lower extreme value copulas. We illustrate the relevance of our results by an implication to risk management.</span></p></div>\",\"PeriodicalId\":16431,\"journal\":{\"name\":\"Journal of Multivariate Analysis\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2023-11-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Multivariate Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0047259X23001136\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Multivariate Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0047259X23001136","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
Multivariate tail dependence and local stochastic dominance
Given two multivariate copulas with corresponding tail dependence functions, we investigate the relation between a natural tail dependence ordering and the order of local stochastic dominance. We show that, although the two orderings are not equivalent in general, they coincide for various important classes of copulas, among them all multivariate Archimedean and bivariate lower extreme value copulas. We illustrate the relevance of our results by an implication to risk management.
期刊介绍:
Founded in 1971, the Journal of Multivariate Analysis (JMVA) is the central venue for the publication of new, relevant methodology and particularly innovative applications pertaining to the analysis and interpretation of multidimensional data.
The journal welcomes contributions to all aspects of multivariate data analysis and modeling, including cluster analysis, discriminant analysis, factor analysis, and multidimensional continuous or discrete distribution theory. Topics of current interest include, but are not limited to, inferential aspects of
Copula modeling
Functional data analysis
Graphical modeling
High-dimensional data analysis
Image analysis
Multivariate extreme-value theory
Sparse modeling
Spatial statistics.