二元聚类的聚类聚合注释

IF 0.8 4区 管理学 Q4 OPERATIONS RESEARCH & MANAGEMENT SCIENCE Operations Research Letters Pub Date : 2023-11-27 DOI:10.1016/j.orl.2023.11.005
Jiehua Chen , Danny Hermelin , Manuel Sorge
{"title":"二元聚类的聚类聚合注释","authors":"Jiehua Chen ,&nbsp;Danny Hermelin ,&nbsp;Manuel Sorge","doi":"10.1016/j.orl.2023.11.005","DOIUrl":null,"url":null,"abstract":"<div><p>We consider the clustering aggregation problem in which we are given a set of clusterings and want to find an aggregated clustering which minimizes the sum of mismatches to the input clusterings. In the binary case (each clustering is a bipartition) this problem was known to be NP-hard under Turing reductions. We strengthen this result by providing a polynomial-time many-one reduction. Our result also implies that no <span><math><msup><mrow><mn>2</mn></mrow><mrow><mi>o</mi><mo>(</mo><mi>n</mi><mo>)</mo></mrow></msup><mo>⋅</mo><mo>|</mo><msup><mrow><mi>I</mi></mrow><mrow><mo>′</mo></mrow></msup><msup><mrow><mo>|</mo></mrow><mrow><mi>O</mi><mo>(</mo><mn>1</mn><mo>)</mo></mrow></msup></math></span>-time algorithm exists that solves any given clustering instance <span><math><msup><mrow><mi>I</mi></mrow><mrow><mo>′</mo></mrow></msup></math></span> with <em>n</em><span> elements, unless the Exponential Time Hypothesis fails. On the positive side, we show that the problem is fixed-parameter tractable with respect to the number of input clusterings.</span></p></div>","PeriodicalId":54682,"journal":{"name":"Operations Research Letters","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2023-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A note on clustering aggregation for binary clusterings\",\"authors\":\"Jiehua Chen ,&nbsp;Danny Hermelin ,&nbsp;Manuel Sorge\",\"doi\":\"10.1016/j.orl.2023.11.005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We consider the clustering aggregation problem in which we are given a set of clusterings and want to find an aggregated clustering which minimizes the sum of mismatches to the input clusterings. In the binary case (each clustering is a bipartition) this problem was known to be NP-hard under Turing reductions. We strengthen this result by providing a polynomial-time many-one reduction. Our result also implies that no <span><math><msup><mrow><mn>2</mn></mrow><mrow><mi>o</mi><mo>(</mo><mi>n</mi><mo>)</mo></mrow></msup><mo>⋅</mo><mo>|</mo><msup><mrow><mi>I</mi></mrow><mrow><mo>′</mo></mrow></msup><msup><mrow><mo>|</mo></mrow><mrow><mi>O</mi><mo>(</mo><mn>1</mn><mo>)</mo></mrow></msup></math></span>-time algorithm exists that solves any given clustering instance <span><math><msup><mrow><mi>I</mi></mrow><mrow><mo>′</mo></mrow></msup></math></span> with <em>n</em><span> elements, unless the Exponential Time Hypothesis fails. On the positive side, we show that the problem is fixed-parameter tractable with respect to the number of input clusterings.</span></p></div>\",\"PeriodicalId\":54682,\"journal\":{\"name\":\"Operations Research Letters\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-11-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Operations Research Letters\",\"FirstCategoryId\":\"91\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167637723001839\",\"RegionNum\":4,\"RegionCategory\":\"管理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"OPERATIONS RESEARCH & MANAGEMENT SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Operations Research Letters","FirstCategoryId":"91","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167637723001839","RegionNum":4,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"OPERATIONS RESEARCH & MANAGEMENT SCIENCE","Score":null,"Total":0}
引用次数: 0

摘要

我们考虑一个聚类聚集问题,即给定一组聚类,并希望找到一个与输入聚类不匹配的总和最小的聚类。在二元情况下(每个聚类都是一个双分区),这个问题在图灵约简下是np困难的。我们通过提供一个多项式时间的多一约简来加强这个结果。我们的结果还表明,除非指数时间假设不成立,否则不存在20 (n)⋅|I ' |O(1)时间算法来解决任何给定的具有n个元素的聚类实例I '。从积极的方面来看,我们证明了这个问题相对于输入聚类的数量是固定参数可处理的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A note on clustering aggregation for binary clusterings

We consider the clustering aggregation problem in which we are given a set of clusterings and want to find an aggregated clustering which minimizes the sum of mismatches to the input clusterings. In the binary case (each clustering is a bipartition) this problem was known to be NP-hard under Turing reductions. We strengthen this result by providing a polynomial-time many-one reduction. Our result also implies that no 2o(n)|I|O(1)-time algorithm exists that solves any given clustering instance I with n elements, unless the Exponential Time Hypothesis fails. On the positive side, we show that the problem is fixed-parameter tractable with respect to the number of input clusterings.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Operations Research Letters
Operations Research Letters 管理科学-运筹学与管理科学
CiteScore
2.10
自引率
9.10%
发文量
111
审稿时长
83 days
期刊介绍: Operations Research Letters is committed to the rapid review and fast publication of short articles on all aspects of operations research and analytics. Apart from a limitation to eight journal pages, quality, originality, relevance and clarity are the only criteria for selecting the papers to be published. ORL covers the broad field of optimization, stochastic models and game theory. Specific areas of interest include networks, routing, location, queueing, scheduling, inventory, reliability, and financial engineering. We wish to explore interfaces with other fields such as life sciences and health care, artificial intelligence and machine learning, energy distribution, and computational social sciences and humanities. Our traditional strength is in methodology, including theory, modelling, algorithms and computational studies. We also welcome novel applications and concise literature reviews.
期刊最新文献
Break maximization for round-robin tournaments without consecutive breaks Anchored rescheduling problem with non-availability periods The circle packing problem: A theoretical comparison of various convexification techniques Structured pruning of neural networks for constraints learning Worst-case analysis of restarted primal-dual hybrid gradient on totally unimodular linear programs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1