Gustavo Miotto, Marcelo Caggiani Luizelli, Weverton Luis da Costa Cordeiro, Luciano Paschoal Gaspary
{"title":"利用NFV-PEAR实现虚拟网络功能的自适应放置和链接","authors":"Gustavo Miotto, Marcelo Caggiani Luizelli, Weverton Luis da Costa Cordeiro, Luciano Paschoal Gaspary","doi":"10.1186/s13174-019-0102-2","DOIUrl":null,"url":null,"abstract":"The design of flexible and efficient mechanisms for proper placement and chaining of virtual network functions (VNFs) is key for the success of Network Function Virtualization (NFV). Most state-of-the-art solutions, however, consider fixed (and immutable) flow processing and bandwidth requirements when placing VNFs in the Network Points of Presence (N-PoPs). This limitation becomes critical in NFV-enabled networks having highly dynamic flow behavior, and in which flow processing requirements and available N-PoP resources change constantly. To bridge this gap, we present NFV-PEAR, a framework for adaptive VNF placement and chaining. In NFV-PEAR, network operators may periodically (re)arrange previously determined placement and chaining of VNFs, with the goal of maintaining acceptable end-to-end flow performance despite fluctuations of flow processing costs and requirements. In parallel, NFV-PEAR seeks to minimize network changes (e.g., reallocation of VNFs or network flows). The results obtained from an analytical and experimental evaluation provide evidence that NFV-PEAR has potential to deliver more stable operation of network services, while significantly reducing the number of network changes required to ensure end-to-end flow performance.","PeriodicalId":46467,"journal":{"name":"Journal of Internet Services and Applications","volume":"25 1","pages":"1-19"},"PeriodicalIF":2.4000,"publicationDate":"2019-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"27","resultStr":"{\"title\":\"Adaptive placement & chaining of virtual network functions with NFV-PEAR\",\"authors\":\"Gustavo Miotto, Marcelo Caggiani Luizelli, Weverton Luis da Costa Cordeiro, Luciano Paschoal Gaspary\",\"doi\":\"10.1186/s13174-019-0102-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The design of flexible and efficient mechanisms for proper placement and chaining of virtual network functions (VNFs) is key for the success of Network Function Virtualization (NFV). Most state-of-the-art solutions, however, consider fixed (and immutable) flow processing and bandwidth requirements when placing VNFs in the Network Points of Presence (N-PoPs). This limitation becomes critical in NFV-enabled networks having highly dynamic flow behavior, and in which flow processing requirements and available N-PoP resources change constantly. To bridge this gap, we present NFV-PEAR, a framework for adaptive VNF placement and chaining. In NFV-PEAR, network operators may periodically (re)arrange previously determined placement and chaining of VNFs, with the goal of maintaining acceptable end-to-end flow performance despite fluctuations of flow processing costs and requirements. In parallel, NFV-PEAR seeks to minimize network changes (e.g., reallocation of VNFs or network flows). The results obtained from an analytical and experimental evaluation provide evidence that NFV-PEAR has potential to deliver more stable operation of network services, while significantly reducing the number of network changes required to ensure end-to-end flow performance.\",\"PeriodicalId\":46467,\"journal\":{\"name\":\"Journal of Internet Services and Applications\",\"volume\":\"25 1\",\"pages\":\"1-19\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2019-02-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"27\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Internet Services and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1186/s13174-019-0102-2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Internet Services and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s13174-019-0102-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Adaptive placement & chaining of virtual network functions with NFV-PEAR
The design of flexible and efficient mechanisms for proper placement and chaining of virtual network functions (VNFs) is key for the success of Network Function Virtualization (NFV). Most state-of-the-art solutions, however, consider fixed (and immutable) flow processing and bandwidth requirements when placing VNFs in the Network Points of Presence (N-PoPs). This limitation becomes critical in NFV-enabled networks having highly dynamic flow behavior, and in which flow processing requirements and available N-PoP resources change constantly. To bridge this gap, we present NFV-PEAR, a framework for adaptive VNF placement and chaining. In NFV-PEAR, network operators may periodically (re)arrange previously determined placement and chaining of VNFs, with the goal of maintaining acceptable end-to-end flow performance despite fluctuations of flow processing costs and requirements. In parallel, NFV-PEAR seeks to minimize network changes (e.g., reallocation of VNFs or network flows). The results obtained from an analytical and experimental evaluation provide evidence that NFV-PEAR has potential to deliver more stable operation of network services, while significantly reducing the number of network changes required to ensure end-to-end flow performance.