利用LatentOut增强异常检测器

IF 2.3 3区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Journal of Intelligent Information Systems Pub Date : 2023-11-24 DOI:10.1007/s10844-023-00829-6
Fabrizio Angiulli, Fabio Fassetti, Luca Ferragina
{"title":"利用LatentOut增强异常检测器","authors":"Fabrizio Angiulli, Fabio Fassetti, Luca Ferragina","doi":"10.1007/s10844-023-00829-6","DOIUrl":null,"url":null,"abstract":"<p><span>\\({{\\textbf{Latent}}\\varvec{Out}}\\)</span> is a recently introduced algorithm for unsupervised anomaly detection which enhances latent space-based neural methods, namely (<i>Variational</i>) <i>Autoencoders</i>, <i>GANomaly</i> and <i>ANOGan</i> architectures. The main idea behind it is to exploit both the latent space and the baseline score of these architectures in order to provide a refined anomaly score performing density estimation in the augmented latent-space/baseline-score feature space. In this paper we investigate the performance of <span>\\({{\\textbf{Latent}}\\varvec{Out}}\\)</span> acting as a one-class classifier and we experiment the combination of <span>\\({{\\textbf{Latent}}\\varvec{Out}}\\)</span> with <i>GAAL</i> architectures, a novel type of Generative Adversarial Networks for unsupervised anomaly detection. Moreover, we show that the feature space induced by <span>\\({{\\textbf{Latent}}\\varvec{Out}}\\)</span> has the characteristic to enhance the separation between normal and anomalous data. Indeed, we prove that standard data mining outlier detection methods perform better when applied on this novel augmented latent space rather than on the original data space.</p>","PeriodicalId":56119,"journal":{"name":"Journal of Intelligent Information Systems","volume":"77 10","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2023-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancing anomaly detectors with LatentOut\",\"authors\":\"Fabrizio Angiulli, Fabio Fassetti, Luca Ferragina\",\"doi\":\"10.1007/s10844-023-00829-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><span>\\\\({{\\\\textbf{Latent}}\\\\varvec{Out}}\\\\)</span> is a recently introduced algorithm for unsupervised anomaly detection which enhances latent space-based neural methods, namely (<i>Variational</i>) <i>Autoencoders</i>, <i>GANomaly</i> and <i>ANOGan</i> architectures. The main idea behind it is to exploit both the latent space and the baseline score of these architectures in order to provide a refined anomaly score performing density estimation in the augmented latent-space/baseline-score feature space. In this paper we investigate the performance of <span>\\\\({{\\\\textbf{Latent}}\\\\varvec{Out}}\\\\)</span> acting as a one-class classifier and we experiment the combination of <span>\\\\({{\\\\textbf{Latent}}\\\\varvec{Out}}\\\\)</span> with <i>GAAL</i> architectures, a novel type of Generative Adversarial Networks for unsupervised anomaly detection. Moreover, we show that the feature space induced by <span>\\\\({{\\\\textbf{Latent}}\\\\varvec{Out}}\\\\)</span> has the characteristic to enhance the separation between normal and anomalous data. Indeed, we prove that standard data mining outlier detection methods perform better when applied on this novel augmented latent space rather than on the original data space.</p>\",\"PeriodicalId\":56119,\"journal\":{\"name\":\"Journal of Intelligent Information Systems\",\"volume\":\"77 10\",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2023-11-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Intelligent Information Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s10844-023-00829-6\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Intelligent Information Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s10844-023-00829-6","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

\({{\textbf{Latent}}\varvec{Out}}\) 是最近引入的一种用于无监督异常检测的算法,它增强了基于潜在空间的神经方法,即(变分)自编码器、GANomaly和ANOGan架构。其背后的主要思想是利用这些架构的潜在空间和基线分数,以便在增强的潜在空间/基线分数特征空间中提供执行密度估计的精细异常分数。在本文中,我们研究了\({{\textbf{Latent}}\varvec{Out}}\)作为单类分类器的性能,并实验了\({{\textbf{Latent}}\varvec{Out}}\)与GAAL架构的组合,GAAL架构是一种用于无监督异常检测的新型生成对抗网络。此外,我们还证明了\({{\textbf{Latent}}\varvec{Out}}\)诱导的特征空间具有增强正常和异常数据分离的特性。事实上,我们证明了标准的数据挖掘离群点检测方法在应用于这种新的增强潜在空间时比应用于原始数据空间时表现得更好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Enhancing anomaly detectors with LatentOut

\({{\textbf{Latent}}\varvec{Out}}\) is a recently introduced algorithm for unsupervised anomaly detection which enhances latent space-based neural methods, namely (Variational) Autoencoders, GANomaly and ANOGan architectures. The main idea behind it is to exploit both the latent space and the baseline score of these architectures in order to provide a refined anomaly score performing density estimation in the augmented latent-space/baseline-score feature space. In this paper we investigate the performance of \({{\textbf{Latent}}\varvec{Out}}\) acting as a one-class classifier and we experiment the combination of \({{\textbf{Latent}}\varvec{Out}}\) with GAAL architectures, a novel type of Generative Adversarial Networks for unsupervised anomaly detection. Moreover, we show that the feature space induced by \({{\textbf{Latent}}\varvec{Out}}\) has the characteristic to enhance the separation between normal and anomalous data. Indeed, we prove that standard data mining outlier detection methods perform better when applied on this novel augmented latent space rather than on the original data space.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Intelligent Information Systems
Journal of Intelligent Information Systems 工程技术-计算机:人工智能
CiteScore
7.20
自引率
11.80%
发文量
72
审稿时长
6-12 weeks
期刊介绍: The mission of the Journal of Intelligent Information Systems: Integrating Artifical Intelligence and Database Technologies is to foster and present research and development results focused on the integration of artificial intelligence and database technologies to create next generation information systems - Intelligent Information Systems. These new information systems embody knowledge that allows them to exhibit intelligent behavior, cooperate with users and other systems in problem solving, discovery, access, retrieval and manipulation of a wide variety of multimedia data and knowledge, and reason under uncertainty. Increasingly, knowledge-directed inference processes are being used to: discover knowledge from large data collections, provide cooperative support to users in complex query formulation and refinement, access, retrieve, store and manage large collections of multimedia data and knowledge, integrate information from multiple heterogeneous data and knowledge sources, and reason about information under uncertain conditions. Multimedia and hypermedia information systems now operate on a global scale over the Internet, and new tools and techniques are needed to manage these dynamic and evolving information spaces. The Journal of Intelligent Information Systems provides a forum wherein academics, researchers and practitioners may publish high-quality, original and state-of-the-art papers describing theoretical aspects, systems architectures, analysis and design tools and techniques, and implementation experiences in intelligent information systems. The categories of papers published by JIIS include: research papers, invited papters, meetings, workshop and conference annoucements and reports, survey and tutorial articles, and book reviews. Short articles describing open problems or their solutions are also welcome.
期刊最新文献
Nirdizati: an advanced predictive process monitoring toolkit Graph attention networks with adaptive neighbor graph aggregation for cold-start recommendation FedGR: Cross-platform federated group recommendation system with hypergraph neural networks CONCORD: enhancing COVID-19 research with weak-supervision based numerical claim extraction DA-BAG: A multi-model fusion text classification method combining BERT and GCN using self-domain adversarial training
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1