信贷组合中的传染性违约:贝叶斯网络方法

IF 0.3 4区 经济学 Q4 Economics, Econometrics and Finance Journal of Credit Risk Pub Date : 2020-03-01 DOI:10.21314/jcr.2020.257
Ioannis Anagnostou,Javier Sanchez Rivero,Sumit Sourabh,Drona Kandhai
{"title":"信贷组合中的传染性违约:贝叶斯网络方法","authors":"Ioannis Anagnostou,Javier Sanchez Rivero,Sumit Sourabh,Drona Kandhai","doi":"10.21314/jcr.2020.257","DOIUrl":null,"url":null,"abstract":"The robustness of credit portfolio models is of great interest for financial institutions and regulators, since misspecified models translate into insufficient capital buffers and a crisis-prone financial system. In this paper, the authors propose a method to enhance credit portfolio models based on the model of Merton by incorporating contagion effects. While, in most models, the risks related to financial interconnectedness are neglected, the authors use Bayesian network methods to uncover the direct and indirect relationships between credits while maintaining the convenient representation of factor models. A range of techniques to learn the structure and parameters of financial networks from real credit default swaps data are studied and evaluated. Their approach is demonstrated in detail in a stylized portfolio, and the impact on standard risk metrics is estimated.","PeriodicalId":44244,"journal":{"name":"Journal of Credit Risk","volume":"215 ","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2020-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Contagious defaults in a credit portfolio: a Bayesian network approach\",\"authors\":\"Ioannis Anagnostou,Javier Sanchez Rivero,Sumit Sourabh,Drona Kandhai\",\"doi\":\"10.21314/jcr.2020.257\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The robustness of credit portfolio models is of great interest for financial institutions and regulators, since misspecified models translate into insufficient capital buffers and a crisis-prone financial system. In this paper, the authors propose a method to enhance credit portfolio models based on the model of Merton by incorporating contagion effects. While, in most models, the risks related to financial interconnectedness are neglected, the authors use Bayesian network methods to uncover the direct and indirect relationships between credits while maintaining the convenient representation of factor models. A range of techniques to learn the structure and parameters of financial networks from real credit default swaps data are studied and evaluated. Their approach is demonstrated in detail in a stylized portfolio, and the impact on standard risk metrics is estimated.\",\"PeriodicalId\":44244,\"journal\":{\"name\":\"Journal of Credit Risk\",\"volume\":\"215 \",\"pages\":\"\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2020-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Credit Risk\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://doi.org/10.21314/jcr.2020.257\",\"RegionNum\":4,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Economics, Econometrics and Finance\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Credit Risk","FirstCategoryId":"96","ListUrlMain":"https://doi.org/10.21314/jcr.2020.257","RegionNum":4,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Economics, Econometrics and Finance","Score":null,"Total":0}
引用次数: 0

摘要

金融机构和监管机构对信贷组合模型的稳健性非常感兴趣,因为错误的模型会导致资本缓冲不足和金融体系容易发生危机。本文在默顿模型的基础上,提出了一种将传染效应纳入信用组合模型的方法。然而,在大多数模型中,与金融互联性相关的风险被忽略了,作者使用贝叶斯网络方法来揭示信用之间的直接和间接关系,同时保持因素模型的方便表示。研究和评估了从真实信用违约互换数据中学习金融网络结构和参数的一系列技术。他们的方法在一个程式化的投资组合中被详细演示,并且对标准风险度量的影响进行了估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Contagious defaults in a credit portfolio: a Bayesian network approach
The robustness of credit portfolio models is of great interest for financial institutions and regulators, since misspecified models translate into insufficient capital buffers and a crisis-prone financial system. In this paper, the authors propose a method to enhance credit portfolio models based on the model of Merton by incorporating contagion effects. While, in most models, the risks related to financial interconnectedness are neglected, the authors use Bayesian network methods to uncover the direct and indirect relationships between credits while maintaining the convenient representation of factor models. A range of techniques to learn the structure and parameters of financial networks from real credit default swaps data are studied and evaluated. Their approach is demonstrated in detail in a stylized portfolio, and the impact on standard risk metrics is estimated.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Credit Risk
Journal of Credit Risk BUSINESS, FINANCE-
CiteScore
0.90
自引率
0.00%
发文量
10
期刊介绍: With the re-writing of the Basel accords in international banking and their ensuing application, interest in credit risk has never been greater. The Journal of Credit Risk focuses on the measurement and management of credit risk, the valuation and hedging of credit products, and aims to promote a greater understanding in the area of credit risk theory and practice. The Journal of Credit Risk considers submissions in the form of research papers and technical papers, on topics including, but not limited to: Modelling and management of portfolio credit risk Recent advances in parameterizing credit risk models: default probability estimation, copulas and credit risk correlation, recoveries and loss given default, collateral valuation, loss distributions and extreme events Pricing and hedging of credit derivatives Structured credit products and securitizations e.g. collateralized debt obligations, synthetic securitizations, credit baskets, etc. Measuring managing and hedging counterparty credit risk Credit risk transfer techniques Liquidity risk and extreme credit events Regulatory issues, such as Basel II, internal ratings systems, credit-scoring techniques and credit risk capital adequacy.
期刊最新文献
Understanding and predicting systemic corporate distress: a machine-learning approach Managerial connections and corporate risk-taking: evidence from the Great Recession Instabilities in Cox proportional hazards models in credit risk Calibration alternatives to logistic regression and their potential for transferring the statistical dispersion of discriminatory power into uncertainties in probabilities of default Small and medium-sized enterprises’ time to default: an analysis using an improved mixture cure model with time-varying covariates
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1