基于字典学习的印刷小纹理模块识别

IF 2.4 4区 计算机科学 Eurasip Journal on Image and Video Processing Pub Date : 2021-09-29 DOI:10.1186/s13640-021-00573-3
Yu, Lifang, Cao, Gang, Tian, Huawei, Cao, Peng, Zhang, Zhenzhen, Shi, Yun Q.
{"title":"基于字典学习的印刷小纹理模块识别","authors":"Yu, Lifang, Cao, Gang, Tian, Huawei, Cao, Peng, Zhang, Zhenzhen, Shi, Yun Q.","doi":"10.1186/s13640-021-00573-3","DOIUrl":null,"url":null,"abstract":"<p>Quick Response (QR) codes are designed for information storage and high-speed reading applications. To store additional information, Two-Level QR (2LQR) codes replace black modules in standard QR codes with specific texture patterns. When the 2LQR code is printed, texture patterns are blurred and their sizes are smaller than<span>\\(0.5{\\mathrm{cm}}^{2}\\)</span>. Recognizing small-sized blurred texture patterns is challenging. In original 2LQR literature, recognition of texture patterns is based on maximizing the correlation between print-and-scanned texture patterns and the original digital ones. When employing desktop printers with large pixel extensions and low-resolution capture devices, the recognition accuracy of texture patterns greatly reduces. To improve the recognition accuracy under this situation, our work presents a dictionary learning based scheme to recognize printed texture patterns. To our best knowledge, it is the first attempt to use dictionary learning to promote the recognition accuracy of printed texture patterns. In our scheme, dictionaries for all kinds of texture patterns are learned from print-and-scanned texture modules in the training stage. And these learned dictionaries are employed to represent each texture module in the testing stage (extracting process) to recognize their texture pattern. Experimental results show that our proposed algorithm significantly reduces the recognition error of small-sized printed texture patterns.</p>","PeriodicalId":49322,"journal":{"name":"Eurasip Journal on Image and Video Processing","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2021-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Recognition of printed small texture modules based on dictionary learning\",\"authors\":\"Yu, Lifang, Cao, Gang, Tian, Huawei, Cao, Peng, Zhang, Zhenzhen, Shi, Yun Q.\",\"doi\":\"10.1186/s13640-021-00573-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Quick Response (QR) codes are designed for information storage and high-speed reading applications. To store additional information, Two-Level QR (2LQR) codes replace black modules in standard QR codes with specific texture patterns. When the 2LQR code is printed, texture patterns are blurred and their sizes are smaller than<span>\\\\(0.5{\\\\mathrm{cm}}^{2}\\\\)</span>. Recognizing small-sized blurred texture patterns is challenging. In original 2LQR literature, recognition of texture patterns is based on maximizing the correlation between print-and-scanned texture patterns and the original digital ones. When employing desktop printers with large pixel extensions and low-resolution capture devices, the recognition accuracy of texture patterns greatly reduces. To improve the recognition accuracy under this situation, our work presents a dictionary learning based scheme to recognize printed texture patterns. To our best knowledge, it is the first attempt to use dictionary learning to promote the recognition accuracy of printed texture patterns. In our scheme, dictionaries for all kinds of texture patterns are learned from print-and-scanned texture modules in the training stage. And these learned dictionaries are employed to represent each texture module in the testing stage (extracting process) to recognize their texture pattern. Experimental results show that our proposed algorithm significantly reduces the recognition error of small-sized printed texture patterns.</p>\",\"PeriodicalId\":49322,\"journal\":{\"name\":\"Eurasip Journal on Image and Video Processing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2021-09-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Eurasip Journal on Image and Video Processing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1186/s13640-021-00573-3\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Eurasip Journal on Image and Video Processing","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1186/s13640-021-00573-3","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

QR码是为信息存储和高速读取应用而设计的。为了存储额外的信息,二级QR码(2LQR)用特定的纹理图案取代了标准QR码中的黑色模块。2LQR码打印时,纹理图案模糊,尺寸小于\(0.5{\mathrm{cm}}^{2}\)。识别小尺寸的模糊纹理图案具有挑战性。在原始的2LQR文献中,纹理模式的识别是基于最大化打印和扫描纹理模式与原始数字纹理模式之间的相关性。当使用大像素扩展的桌面打印机和低分辨率捕获设备时,纹理图案的识别精度大大降低。为了提高这种情况下的识别精度,本文提出了一种基于字典学习的印刷纹理模式识别方案。据我们所知,这是第一次尝试使用字典学习来提高印刷纹理图案的识别精度。在我们的方案中,在训练阶段从打印和扫描纹理模块中学习各种纹理模式的字典。在测试阶段(提取过程)使用这些学习到的字典来表示每个纹理模块,以识别它们的纹理模式。实验结果表明,该算法显著降低了小尺寸印刷纹理图案的识别误差。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Recognition of printed small texture modules based on dictionary learning

Quick Response (QR) codes are designed for information storage and high-speed reading applications. To store additional information, Two-Level QR (2LQR) codes replace black modules in standard QR codes with specific texture patterns. When the 2LQR code is printed, texture patterns are blurred and their sizes are smaller than\(0.5{\mathrm{cm}}^{2}\). Recognizing small-sized blurred texture patterns is challenging. In original 2LQR literature, recognition of texture patterns is based on maximizing the correlation between print-and-scanned texture patterns and the original digital ones. When employing desktop printers with large pixel extensions and low-resolution capture devices, the recognition accuracy of texture patterns greatly reduces. To improve the recognition accuracy under this situation, our work presents a dictionary learning based scheme to recognize printed texture patterns. To our best knowledge, it is the first attempt to use dictionary learning to promote the recognition accuracy of printed texture patterns. In our scheme, dictionaries for all kinds of texture patterns are learned from print-and-scanned texture modules in the training stage. And these learned dictionaries are employed to represent each texture module in the testing stage (extracting process) to recognize their texture pattern. Experimental results show that our proposed algorithm significantly reduces the recognition error of small-sized printed texture patterns.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Eurasip Journal on Image and Video Processing
Eurasip Journal on Image and Video Processing Engineering-Electrical and Electronic Engineering
CiteScore
7.10
自引率
0.00%
发文量
23
审稿时长
6.8 months
期刊介绍: EURASIP Journal on Image and Video Processing is intended for researchers from both academia and industry, who are active in the multidisciplinary field of image and video processing. The scope of the journal covers all theoretical and practical aspects of the domain, from basic research to development of application.
期刊最新文献
Advanced fine-tuning procedures to enhance DNN robustness in visual coding for machines A novel multiscale cGAN approach for enhanced salient object detection in single haze images Optimization of parameters for image denoising algorithm pertaining to generalized Caputo-Fabrizio fractional operator Utility-based performance evaluation of biometric sample quality measures Beyond the visible: thermal data for facial soft biometric estimation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1