{"title":"用碳同位素验证胶凝材料直接捕集空气的方法","authors":"Zhenzhen Wang, Abudushalamu Aili, Masayo Minami, Ippei Maruyama","doi":"10.3151/jact.21.934","DOIUrl":null,"url":null,"abstract":"</p><p>Capturing atmospheric CO<sub>2</sub> into cement-based materials is a way to set off the CO<sub>2</sub> emissions of concrete production. This study proposes an experimental method to track the origin of cement paste that fixes CO<sub>2</sub> directly from the air under natural conditions. By exposing powders of well-hydrated cement paste to air, carbonated cement paste powders are obtained with different carbonation degrees. The inorganic carbon of these carbonated samples is extracted by dissolution in phosphoric acid, and the isotopic characteristics related to <sup>13</sup>C and <sup>14</sup>C are measured. The experimental results show that the <sup>14</sup>C value of carbonated cement paste can be used as an indicator for tracing the origin of carbon.</p>\n<p></p>","PeriodicalId":14868,"journal":{"name":"Journal of Advanced Concrete Technology","volume":"21 1","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2023-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Verification Method of Direct Air Capture by Cementitious Material Using Carbon Isotopes\",\"authors\":\"Zhenzhen Wang, Abudushalamu Aili, Masayo Minami, Ippei Maruyama\",\"doi\":\"10.3151/jact.21.934\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"</p><p>Capturing atmospheric CO<sub>2</sub> into cement-based materials is a way to set off the CO<sub>2</sub> emissions of concrete production. This study proposes an experimental method to track the origin of cement paste that fixes CO<sub>2</sub> directly from the air under natural conditions. By exposing powders of well-hydrated cement paste to air, carbonated cement paste powders are obtained with different carbonation degrees. The inorganic carbon of these carbonated samples is extracted by dissolution in phosphoric acid, and the isotopic characteristics related to <sup>13</sup>C and <sup>14</sup>C are measured. The experimental results show that the <sup>14</sup>C value of carbonated cement paste can be used as an indicator for tracing the origin of carbon.</p>\\n<p></p>\",\"PeriodicalId\":14868,\"journal\":{\"name\":\"Journal of Advanced Concrete Technology\",\"volume\":\"21 1\",\"pages\":\"\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2023-11-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Advanced Concrete Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3151/jact.21.934\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Advanced Concrete Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3151/jact.21.934","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
Verification Method of Direct Air Capture by Cementitious Material Using Carbon Isotopes
Capturing atmospheric CO2 into cement-based materials is a way to set off the CO2 emissions of concrete production. This study proposes an experimental method to track the origin of cement paste that fixes CO2 directly from the air under natural conditions. By exposing powders of well-hydrated cement paste to air, carbonated cement paste powders are obtained with different carbonation degrees. The inorganic carbon of these carbonated samples is extracted by dissolution in phosphoric acid, and the isotopic characteristics related to 13C and 14C are measured. The experimental results show that the 14C value of carbonated cement paste can be used as an indicator for tracing the origin of carbon.
期刊介绍:
JACT is fast. Only 5 to 7 months from submission to publishing thanks to electronic file exchange between you, the reviewers and the editors.
JACT is high quality. Peer-reviewed by internationally renowned experts who return review comments to ensure the highest possible quality.
JACT is transparent. The status of your manuscript from submission to publishing can be viewed on our website, greatly reducing the frustration of being kept in the dark, possibly for over a year in the case of some journals.
JACT is cost-effective. Submission and subscription are free of charge . Full-text PDF files are available for the authors to open at their web sites.
Scope:
*Materials:
-Material properties
-Fresh concrete
-Hardened concrete
-High performance concrete
-Development of new materials
-Fiber reinforcement
*Maintenance and Rehabilitation:
-Durability and repair
-Strengthening/Rehabilitation
-LCC for concrete structures
-Environmant conscious materials
*Structures:
-Design and construction of RC and PC Structures
-Seismic design
-Safety against environmental disasters
-Failure mechanism and non-linear analysis/modeling
-Composite and mixed structures
*Other:
-Monitoring
-Aesthetics of concrete structures
-Other concrete related topics