Mauricio Salazar Sicacha, Vladimir P. Minkovich, Alexander B. Sotsky, Artur V. Shilov, Luidmila I. Sotskaya, Evgeny A. Chudakov
{"title":"光子晶体光纤中的损耗模共振","authors":"Mauricio Salazar Sicacha, Vladimir P. Minkovich, Alexander B. Sotsky, Artur V. Shilov, Luidmila I. Sotskaya, Evgeny A. Chudakov","doi":"10.1186/s41476-021-00169-4","DOIUrl":null,"url":null,"abstract":"<div><p>The interaction effect of the fundamental mode in a special photonic crystal fiber (PCF) with a thin-film absorbing coating deposited on a surface of a fiber cladding on the optical transmission of the PCF is theoretically studied. It is shown that the transmission has a multi-peak spectrum that is determined by the resonance capture of the fundamental PCF mode energy by the coating. In some cases, this capture is explained by a resonance coupling between the fundamental core mode and leaky modes of the coating, or between the fundamental PCF mode and cladding modes located between PCF air channels and the coating. Examples are presented of using this effect to develop fiber-optic sensors of refractive index or pressure, and to sense a nanoscale adsorption layer of ammonia molecules deposited on a coating surface contacting air.</p></div>","PeriodicalId":674,"journal":{"name":"Journal of the European Optical Society-Rapid Publications","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2021-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://jeos.springeropen.com/counter/pdf/10.1186/s41476-021-00169-4","citationCount":"0","resultStr":"{\"title\":\"Lossy mode resonances in photonic crystal fibers\",\"authors\":\"Mauricio Salazar Sicacha, Vladimir P. Minkovich, Alexander B. Sotsky, Artur V. Shilov, Luidmila I. Sotskaya, Evgeny A. Chudakov\",\"doi\":\"10.1186/s41476-021-00169-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The interaction effect of the fundamental mode in a special photonic crystal fiber (PCF) with a thin-film absorbing coating deposited on a surface of a fiber cladding on the optical transmission of the PCF is theoretically studied. It is shown that the transmission has a multi-peak spectrum that is determined by the resonance capture of the fundamental PCF mode energy by the coating. In some cases, this capture is explained by a resonance coupling between the fundamental core mode and leaky modes of the coating, or between the fundamental PCF mode and cladding modes located between PCF air channels and the coating. Examples are presented of using this effect to develop fiber-optic sensors of refractive index or pressure, and to sense a nanoscale adsorption layer of ammonia molecules deposited on a coating surface contacting air.</p></div>\",\"PeriodicalId\":674,\"journal\":{\"name\":\"Journal of the European Optical Society-Rapid Publications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2021-11-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://jeos.springeropen.com/counter/pdf/10.1186/s41476-021-00169-4\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the European Optical Society-Rapid Publications\",\"FirstCategoryId\":\"4\",\"ListUrlMain\":\"https://link.springer.com/article/10.1186/s41476-021-00169-4\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the European Optical Society-Rapid Publications","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1186/s41476-021-00169-4","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"OPTICS","Score":null,"Total":0}
The interaction effect of the fundamental mode in a special photonic crystal fiber (PCF) with a thin-film absorbing coating deposited on a surface of a fiber cladding on the optical transmission of the PCF is theoretically studied. It is shown that the transmission has a multi-peak spectrum that is determined by the resonance capture of the fundamental PCF mode energy by the coating. In some cases, this capture is explained by a resonance coupling between the fundamental core mode and leaky modes of the coating, or between the fundamental PCF mode and cladding modes located between PCF air channels and the coating. Examples are presented of using this effect to develop fiber-optic sensors of refractive index or pressure, and to sense a nanoscale adsorption layer of ammonia molecules deposited on a coating surface contacting air.
期刊介绍:
Rapid progress in optics and photonics has broadened its application enormously into many branches, including information and communication technology, security, sensing, bio- and medical sciences, healthcare and chemistry.
Recent achievements in other sciences have allowed continual discovery of new natural mysteries and formulation of challenging goals for optics that require further development of modern concepts and running fundamental research.
The Journal of the European Optical Society – Rapid Publications (JEOS:RP) aims to tackle all of the aforementioned points in the form of prompt, scientific, high-quality communications that report on the latest findings. It presents emerging technologies and outlining strategic goals in optics and photonics.
The journal covers both fundamental and applied topics, including but not limited to:
Classical and quantum optics
Light/matter interaction
Optical communication
Micro- and nanooptics
Nonlinear optical phenomena
Optical materials
Optical metrology
Optical spectroscopy
Colour research
Nano and metamaterials
Modern photonics technology
Optical engineering, design and instrumentation
Optical applications in bio-physics and medicine
Interdisciplinary fields using photonics, such as in energy, climate change and cultural heritage
The journal aims to provide readers with recent and important achievements in optics/photonics and, as its name suggests, it strives for the shortest possible publication time.