多层次低秩矩阵的因子拟合、秩分配与划分

Tetiana Parshakova, Trevor Hastie, Eric Darve, Stephen Boyd
{"title":"多层次低秩矩阵的因子拟合、秩分配与划分","authors":"Tetiana Parshakova, Trevor Hastie, Eric Darve, Stephen Boyd","doi":"arxiv-2310.19214","DOIUrl":null,"url":null,"abstract":"We consider multilevel low rank (MLR) matrices, defined as a row and column\npermutation of a sum of matrices, each one a block diagonal refinement of the\nprevious one, with all blocks low rank given in factored form. MLR matrices\nextend low rank matrices but share many of their properties, such as the total\nstorage required and complexity of matrix-vector multiplication. We address\nthree problems that arise in fitting a given matrix by an MLR matrix in the\nFrobenius norm. The first problem is factor fitting, where we adjust the\nfactors of the MLR matrix. The second is rank allocation, where we choose the\nranks of the blocks in each level, subject to the total rank having a given\nvalue, which preserves the total storage needed for the MLR matrix. The final\nproblem is to choose the hierarchical partition of rows and columns, along with\nthe ranks and factors. This paper is accompanied by an open source package that\nimplements the proposed methods.","PeriodicalId":501256,"journal":{"name":"arXiv - CS - Mathematical Software","volume":"18 4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Factor Fitting, Rank Allocation, and Partitioning in Multilevel Low Rank Matrices\",\"authors\":\"Tetiana Parshakova, Trevor Hastie, Eric Darve, Stephen Boyd\",\"doi\":\"arxiv-2310.19214\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider multilevel low rank (MLR) matrices, defined as a row and column\\npermutation of a sum of matrices, each one a block diagonal refinement of the\\nprevious one, with all blocks low rank given in factored form. MLR matrices\\nextend low rank matrices but share many of their properties, such as the total\\nstorage required and complexity of matrix-vector multiplication. We address\\nthree problems that arise in fitting a given matrix by an MLR matrix in the\\nFrobenius norm. The first problem is factor fitting, where we adjust the\\nfactors of the MLR matrix. The second is rank allocation, where we choose the\\nranks of the blocks in each level, subject to the total rank having a given\\nvalue, which preserves the total storage needed for the MLR matrix. The final\\nproblem is to choose the hierarchical partition of rows and columns, along with\\nthe ranks and factors. This paper is accompanied by an open source package that\\nimplements the proposed methods.\",\"PeriodicalId\":501256,\"journal\":{\"name\":\"arXiv - CS - Mathematical Software\",\"volume\":\"18 4\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Mathematical Software\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2310.19214\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Mathematical Software","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2310.19214","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们考虑多层低秩(MLR)矩阵,定义为矩阵和的行和列置换,每个矩阵都是前一个矩阵的块对角细化,所有低秩块都以因子形式给出。MLR矩阵是对低秩矩阵的扩展,但与它们的许多特性相同,例如所需的总存储空间和矩阵-向量乘法的复杂性。我们解决了在frobenius范数中的MLR矩阵拟合给定矩阵时出现的三个问题。第一个问题是因子拟合,我们调整MLR矩阵的因子。第二个是秩分配,我们在每个级别中选择块的秩,服从具有给定值的总秩,这保留了MLR矩阵所需的总存储空间。最后一个问题是选择行和列的分层划分,以及秩和因子。本文附带了一个实现所提出方法的开源包。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Factor Fitting, Rank Allocation, and Partitioning in Multilevel Low Rank Matrices
We consider multilevel low rank (MLR) matrices, defined as a row and column permutation of a sum of matrices, each one a block diagonal refinement of the previous one, with all blocks low rank given in factored form. MLR matrices extend low rank matrices but share many of their properties, such as the total storage required and complexity of matrix-vector multiplication. We address three problems that arise in fitting a given matrix by an MLR matrix in the Frobenius norm. The first problem is factor fitting, where we adjust the factors of the MLR matrix. The second is rank allocation, where we choose the ranks of the blocks in each level, subject to the total rank having a given value, which preserves the total storage needed for the MLR matrix. The final problem is to choose the hierarchical partition of rows and columns, along with the ranks and factors. This paper is accompanied by an open source package that implements the proposed methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A prony method variant which surpasses the Adaptive LMS filter in the output signal's representation of input TorchDA: A Python package for performing data assimilation with deep learning forward and transformation functions HOBOTAN: Efficient Higher Order Binary Optimization Solver with Tensor Networks and PyTorch MPAT: Modular Petri Net Assembly Toolkit Enabling MPI communication within Numba/LLVM JIT-compiled Python code using numba-mpi v1.0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1