任意潜流形上向量场的隐式高斯过程表示

Robert L. Peach, Matteo Vinao-Carl, Nir Grossman, Michael David, Emma Mallas, David Sharp, Paresh A. Malhotra, Pierre Vandergheynst, Adam Gosztolai
{"title":"任意潜流形上向量场的隐式高斯过程表示","authors":"Robert L. Peach, Matteo Vinao-Carl, Nir Grossman, Michael David, Emma Mallas, David Sharp, Paresh A. Malhotra, Pierre Vandergheynst, Adam Gosztolai","doi":"arxiv-2309.16746","DOIUrl":null,"url":null,"abstract":"Gaussian processes (GPs) are popular nonparametric statistical models for\nlearning unknown functions and quantifying the spatiotemporal uncertainty in\ndata. Recent works have extended GPs to model scalar and vector quantities\ndistributed over non-Euclidean domains, including smooth manifolds appearing in\nnumerous fields such as computer vision, dynamical systems, and neuroscience.\nHowever, these approaches assume that the manifold underlying the data is\nknown, limiting their practical utility. We introduce RVGP, a generalisation of\nGPs for learning vector signals over latent Riemannian manifolds. Our method\nuses positional encoding with eigenfunctions of the connection Laplacian,\nassociated with the tangent bundle, readily derived from common graph-based\napproximation of data. We demonstrate that RVGP possesses global regularity\nover the manifold, which allows it to super-resolve and inpaint vector fields\nwhile preserving singularities. Furthermore, we use RVGP to reconstruct\nhigh-density neural dynamics derived from low-density EEG recordings in healthy\nindividuals and Alzheimer's patients. We show that vector field singularities\nare important disease markers and that their reconstruction leads to a\ncomparable classification accuracy of disease states to high-density\nrecordings. Thus, our method overcomes a significant practical limitation in\nexperimental and clinical applications.","PeriodicalId":501256,"journal":{"name":"arXiv - CS - Mathematical Software","volume":"17 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Implicit Gaussian process representation of vector fields over arbitrary latent manifolds\",\"authors\":\"Robert L. Peach, Matteo Vinao-Carl, Nir Grossman, Michael David, Emma Mallas, David Sharp, Paresh A. Malhotra, Pierre Vandergheynst, Adam Gosztolai\",\"doi\":\"arxiv-2309.16746\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Gaussian processes (GPs) are popular nonparametric statistical models for\\nlearning unknown functions and quantifying the spatiotemporal uncertainty in\\ndata. Recent works have extended GPs to model scalar and vector quantities\\ndistributed over non-Euclidean domains, including smooth manifolds appearing in\\nnumerous fields such as computer vision, dynamical systems, and neuroscience.\\nHowever, these approaches assume that the manifold underlying the data is\\nknown, limiting their practical utility. We introduce RVGP, a generalisation of\\nGPs for learning vector signals over latent Riemannian manifolds. Our method\\nuses positional encoding with eigenfunctions of the connection Laplacian,\\nassociated with the tangent bundle, readily derived from common graph-based\\napproximation of data. We demonstrate that RVGP possesses global regularity\\nover the manifold, which allows it to super-resolve and inpaint vector fields\\nwhile preserving singularities. Furthermore, we use RVGP to reconstruct\\nhigh-density neural dynamics derived from low-density EEG recordings in healthy\\nindividuals and Alzheimer's patients. We show that vector field singularities\\nare important disease markers and that their reconstruction leads to a\\ncomparable classification accuracy of disease states to high-density\\nrecordings. Thus, our method overcomes a significant practical limitation in\\nexperimental and clinical applications.\",\"PeriodicalId\":501256,\"journal\":{\"name\":\"arXiv - CS - Mathematical Software\",\"volume\":\"17 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-09-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Mathematical Software\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2309.16746\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Mathematical Software","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2309.16746","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

高斯过程是学习未知函数和量化数据时空不确定性的常用非参数统计模型。最近的工作将GPs扩展到非欧几里得域上的标量和矢量模型,包括出现在计算机视觉、动力系统和神经科学等众多领域的光滑流形。然而,这些方法假设数据背后的流形是已知的,限制了它们的实际效用。我们引入了RVGP,一种用于学习潜在黎曼流形上向量信号的gp的推广。我们的方法使用连接拉普拉斯特征函数的位置编码,与切线束相关联,很容易从常见的基于图的数据近似中得到。我们证明了RVGP在流形上具有全局正则性,这使得它可以在保持奇异性的同时超分辨和绘制向量场。此外,我们使用RVGP重建来自健康个体和阿尔茨海默病患者低密度脑电图记录的大密度神经动力学。我们证明了向量场奇点是重要的疾病标记,并且它们的重建导致疾病状态的分类精度与高密度记录相当。因此,我们的方法在实验和临床应用中克服了一个重要的实际限制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Implicit Gaussian process representation of vector fields over arbitrary latent manifolds
Gaussian processes (GPs) are popular nonparametric statistical models for learning unknown functions and quantifying the spatiotemporal uncertainty in data. Recent works have extended GPs to model scalar and vector quantities distributed over non-Euclidean domains, including smooth manifolds appearing in numerous fields such as computer vision, dynamical systems, and neuroscience. However, these approaches assume that the manifold underlying the data is known, limiting their practical utility. We introduce RVGP, a generalisation of GPs for learning vector signals over latent Riemannian manifolds. Our method uses positional encoding with eigenfunctions of the connection Laplacian, associated with the tangent bundle, readily derived from common graph-based approximation of data. We demonstrate that RVGP possesses global regularity over the manifold, which allows it to super-resolve and inpaint vector fields while preserving singularities. Furthermore, we use RVGP to reconstruct high-density neural dynamics derived from low-density EEG recordings in healthy individuals and Alzheimer's patients. We show that vector field singularities are important disease markers and that their reconstruction leads to a comparable classification accuracy of disease states to high-density recordings. Thus, our method overcomes a significant practical limitation in experimental and clinical applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A prony method variant which surpasses the Adaptive LMS filter in the output signal's representation of input TorchDA: A Python package for performing data assimilation with deep learning forward and transformation functions HOBOTAN: Efficient Higher Order Binary Optimization Solver with Tensor Networks and PyTorch MPAT: Modular Petri Net Assembly Toolkit Enabling MPI communication within Numba/LLVM JIT-compiled Python code using numba-mpi v1.0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1