HPC系统中基于组的作业调度比例调整

Lyakhovets D. S., Baranov A. V., Telegin P. N
{"title":"HPC系统中基于组的作业调度比例调整","authors":"Lyakhovets D. S., Baranov A. V., Telegin P. N","doi":"arxiv-2311.17889","DOIUrl":null,"url":null,"abstract":"During the initialization of a supercomputer job, no useful calculations are\nperformed. A high proportion of initialization time results in idle computing\nresources and less computational efficiency. Certain methods and algorithms\ncombining jobs into groups are used to optimize scheduling of jobs with high\ninitialization proportion. The article considers the influence of the scale\nratio setting in algorithm for the job groups formation, on the performance\nmetrics of the workload manager. The study was carried out on the developed by\nauthors Aleabased workload manager model. The model makes it possible to\nconduct a large number of experiments in reasonable time without losing the\naccuracy of the simulation. We performed a series of experiments involving\nvarious characteristics of the workload. The article represents the results of\na study of the scale ratio influence on efficiency metrics for different\ninitialization time proportions and input workflows with varying intensity and\nhomogeneity. The presented results allow the workload managers administrators\nto set a scale ratio that provides an appropriate balance with contradictory\nefficiency metrics.","PeriodicalId":501256,"journal":{"name":"arXiv - CS - Mathematical Software","volume":"14 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Scale Ratio Tuning of Group Based Job Scheduling in HPC Systems\",\"authors\":\"Lyakhovets D. S., Baranov A. V., Telegin P. N\",\"doi\":\"arxiv-2311.17889\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"During the initialization of a supercomputer job, no useful calculations are\\nperformed. A high proportion of initialization time results in idle computing\\nresources and less computational efficiency. Certain methods and algorithms\\ncombining jobs into groups are used to optimize scheduling of jobs with high\\ninitialization proportion. The article considers the influence of the scale\\nratio setting in algorithm for the job groups formation, on the performance\\nmetrics of the workload manager. The study was carried out on the developed by\\nauthors Aleabased workload manager model. The model makes it possible to\\nconduct a large number of experiments in reasonable time without losing the\\naccuracy of the simulation. We performed a series of experiments involving\\nvarious characteristics of the workload. The article represents the results of\\na study of the scale ratio influence on efficiency metrics for different\\ninitialization time proportions and input workflows with varying intensity and\\nhomogeneity. The presented results allow the workload managers administrators\\nto set a scale ratio that provides an appropriate balance with contradictory\\nefficiency metrics.\",\"PeriodicalId\":501256,\"journal\":{\"name\":\"arXiv - CS - Mathematical Software\",\"volume\":\"14 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-11-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Mathematical Software\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2311.17889\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Mathematical Software","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2311.17889","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在超级计算机作业初始化期间,不会执行有用的计算。过高的初始化时间会导致计算资源的闲置和计算效率的降低。采用作业分组的方法和算法对高初始化比例作业进行调度优化。本文考虑了作业组形成算法中伸缩设置对工作负载管理器性能的影响。本研究是在作者开发的基于albasbased的工作量管理器模型上进行的。该模型可以在合理的时间内进行大量的实验,而不影响仿真的准确性。我们进行了一系列的实验,涉及工作负荷的各种特征。本文研究了不同初始化时间比例和不同强度和均匀性的输入工作流对效率指标的影响。所提供的结果允许工作负载管理器和管理员设置一个比例比率,以在相互矛盾的效率指标之间提供适当的平衡。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Scale Ratio Tuning of Group Based Job Scheduling in HPC Systems
During the initialization of a supercomputer job, no useful calculations are performed. A high proportion of initialization time results in idle computing resources and less computational efficiency. Certain methods and algorithms combining jobs into groups are used to optimize scheduling of jobs with high initialization proportion. The article considers the influence of the scale ratio setting in algorithm for the job groups formation, on the performance metrics of the workload manager. The study was carried out on the developed by authors Aleabased workload manager model. The model makes it possible to conduct a large number of experiments in reasonable time without losing the accuracy of the simulation. We performed a series of experiments involving various characteristics of the workload. The article represents the results of a study of the scale ratio influence on efficiency metrics for different initialization time proportions and input workflows with varying intensity and homogeneity. The presented results allow the workload managers administrators to set a scale ratio that provides an appropriate balance with contradictory efficiency metrics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A prony method variant which surpasses the Adaptive LMS filter in the output signal's representation of input TorchDA: A Python package for performing data assimilation with deep learning forward and transformation functions HOBOTAN: Efficient Higher Order Binary Optimization Solver with Tensor Networks and PyTorch MPAT: Modular Petri Net Assembly Toolkit Enabling MPI communication within Numba/LLVM JIT-compiled Python code using numba-mpi v1.0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1