深度学习稀疏矩阵核在Intel Max系列GPU上的性能优化

Mohammad Zubair, Christoph Bauinger
{"title":"深度学习稀疏矩阵核在Intel Max系列GPU上的性能优化","authors":"Mohammad Zubair, Christoph Bauinger","doi":"arxiv-2311.00368","DOIUrl":null,"url":null,"abstract":"In this paper, we focus on three sparse matrix operations that are relevant\nfor machine learning applications, namely, the sparse-dense matrix\nmultiplication (SPMM), the sampled dense-dense matrix multiplication (SDDMM),\nand the composition of the SDDMM with SPMM, also termed as FusedMM. We develop\noptimized implementations for SPMM, SDDMM, and FusedMM operations utilizing\nIntel oneAPI's Explicit SIMD (ESIMD) SYCL extension API. In contrast to CUDA or\nSYCL, the ESIMD API enables the writing of explicitly vectorized kernel code.\nSparse matrix algorithms implemented with the ESIMD API achieved performance\nclose to the peak of the targeted Intel Data Center GPU. We compare our\nperformance results to Intel's oneMKL library on Intel GPUs and to a recent\nCUDA implementation for the sparse matrix operations on NVIDIA's V100 GPU and\ndemonstrate that our implementations for sparse matrix operations outperform\neither.","PeriodicalId":501256,"journal":{"name":"arXiv - CS - Mathematical Software","volume":"12 4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Performance Optimization of Deep Learning Sparse Matrix Kernels on Intel Max Series GPU\",\"authors\":\"Mohammad Zubair, Christoph Bauinger\",\"doi\":\"arxiv-2311.00368\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we focus on three sparse matrix operations that are relevant\\nfor machine learning applications, namely, the sparse-dense matrix\\nmultiplication (SPMM), the sampled dense-dense matrix multiplication (SDDMM),\\nand the composition of the SDDMM with SPMM, also termed as FusedMM. We develop\\noptimized implementations for SPMM, SDDMM, and FusedMM operations utilizing\\nIntel oneAPI's Explicit SIMD (ESIMD) SYCL extension API. In contrast to CUDA or\\nSYCL, the ESIMD API enables the writing of explicitly vectorized kernel code.\\nSparse matrix algorithms implemented with the ESIMD API achieved performance\\nclose to the peak of the targeted Intel Data Center GPU. We compare our\\nperformance results to Intel's oneMKL library on Intel GPUs and to a recent\\nCUDA implementation for the sparse matrix operations on NVIDIA's V100 GPU and\\ndemonstrate that our implementations for sparse matrix operations outperform\\neither.\",\"PeriodicalId\":501256,\"journal\":{\"name\":\"arXiv - CS - Mathematical Software\",\"volume\":\"12 4\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Mathematical Software\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2311.00368\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Mathematical Software","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2311.00368","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们重点研究了与机器学习应用相关的三种稀疏矩阵运算,即稀疏密集矩阵乘法(SPMM),采样密集密集矩阵乘法(SDDMM)以及SDDMM与SPMM的组合,也称为FusedMM。我们利用英特尔oneAPI的显式SIMD (ESIMD) SYCL扩展API开发了SPMM, SDDMM和FusedMM操作的优化实现。与CUDA或sycl相比,ESIMD API支持编写显式向量化的内核代码。使用ESIMD API实现的稀疏矩阵算法的性能接近目标英特尔数据中心GPU的峰值。我们将我们的性能结果与英特尔GPU上的英特尔oneMKL库和NVIDIA V100 GPU上的稀疏矩阵操作的最近cuda实现进行了比较,并证明我们的稀疏矩阵操作实现的性能优于两者。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Performance Optimization of Deep Learning Sparse Matrix Kernels on Intel Max Series GPU
In this paper, we focus on three sparse matrix operations that are relevant for machine learning applications, namely, the sparse-dense matrix multiplication (SPMM), the sampled dense-dense matrix multiplication (SDDMM), and the composition of the SDDMM with SPMM, also termed as FusedMM. We develop optimized implementations for SPMM, SDDMM, and FusedMM operations utilizing Intel oneAPI's Explicit SIMD (ESIMD) SYCL extension API. In contrast to CUDA or SYCL, the ESIMD API enables the writing of explicitly vectorized kernel code. Sparse matrix algorithms implemented with the ESIMD API achieved performance close to the peak of the targeted Intel Data Center GPU. We compare our performance results to Intel's oneMKL library on Intel GPUs and to a recent CUDA implementation for the sparse matrix operations on NVIDIA's V100 GPU and demonstrate that our implementations for sparse matrix operations outperform either.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A prony method variant which surpasses the Adaptive LMS filter in the output signal's representation of input TorchDA: A Python package for performing data assimilation with deep learning forward and transformation functions HOBOTAN: Efficient Higher Order Binary Optimization Solver with Tensor Networks and PyTorch MPAT: Modular Petri Net Assembly Toolkit Enabling MPI communication within Numba/LLVM JIT-compiled Python code using numba-mpi v1.0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1