非化学计量铁氧体成分磁饱和度和各向异性能的计算探索

Venkata Rohit Punyapu, Jiazhou Zhu, Paul Meza-Morales, Anish Chaluvadi, O. Thompson Mefford, Rachel B. Getman
{"title":"非化学计量铁氧体成分磁饱和度和各向异性能的计算探索","authors":"Venkata Rohit Punyapu, Jiazhou Zhu, Paul Meza-Morales, Anish Chaluvadi, O. Thompson Mefford, Rachel B. Getman","doi":"arxiv-2309.09754","DOIUrl":null,"url":null,"abstract":"A grand challenge in materials research is identifying the relationship\nbetween composition and performance. Herein, we explore this relationship for\nmagnetic properties, specifically magnetic saturation (M$_s$) and magnetic\nanisotropy energy (MAE) of ferrites. Ferrites are materials derived from\nmagnetite (which has the chemical formulae Fe$_3$O$_4$) that comprise metallic\nelements in some combination such as Fe, Mn, Ni, Co, Cu and Zn. They are used\nin a variety of applications such as electromagnetism, magnetic hyperthermia,\nand magnetic imaging. Experimentally, synthesis and characterization of\nmagnetic materials is time consuming. In order to create insight to help guide\nsynthesis, we compute the relationship between ferrite composition and magnetic\nproperties using density functional theory (DFT). Specifically, we compute\nM$_s$ and MAE for 571 ferrite structures with the formulae\nM1$_x$M2$_y$Fe$_{3-x-y}$O$_4$, where M1 and M2 can be Mn, Ni, Co, Cu and/or Zn\nand 0 $\\le$ x $\\le$ 1 and y = 1 - x. By varying composition, we were able to\nvary calculated values of M$_s$ and MAE by up to 9.6$\\times$10$^5$ A m$^{-1}$\nand 14.1$\\times$10$^5$ J m$^{-3}$, respectively. Our results suggest that\ncomposition can be used to optimize magnetic properties for applications in\nheating, imaging, and recording. This is mainly achieved by varying M$_s$, as\nthese applications are more sensitive to variation in M$_s$ than MAE.","PeriodicalId":501259,"journal":{"name":"arXiv - PHYS - Atomic and Molecular Clusters","volume":"12 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Computational Exploration of Magnetic Saturation and Anisotropy Energy for Nonstoichiometric Ferrite Compositions\",\"authors\":\"Venkata Rohit Punyapu, Jiazhou Zhu, Paul Meza-Morales, Anish Chaluvadi, O. Thompson Mefford, Rachel B. Getman\",\"doi\":\"arxiv-2309.09754\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A grand challenge in materials research is identifying the relationship\\nbetween composition and performance. Herein, we explore this relationship for\\nmagnetic properties, specifically magnetic saturation (M$_s$) and magnetic\\nanisotropy energy (MAE) of ferrites. Ferrites are materials derived from\\nmagnetite (which has the chemical formulae Fe$_3$O$_4$) that comprise metallic\\nelements in some combination such as Fe, Mn, Ni, Co, Cu and Zn. They are used\\nin a variety of applications such as electromagnetism, magnetic hyperthermia,\\nand magnetic imaging. Experimentally, synthesis and characterization of\\nmagnetic materials is time consuming. In order to create insight to help guide\\nsynthesis, we compute the relationship between ferrite composition and magnetic\\nproperties using density functional theory (DFT). Specifically, we compute\\nM$_s$ and MAE for 571 ferrite structures with the formulae\\nM1$_x$M2$_y$Fe$_{3-x-y}$O$_4$, where M1 and M2 can be Mn, Ni, Co, Cu and/or Zn\\nand 0 $\\\\le$ x $\\\\le$ 1 and y = 1 - x. By varying composition, we were able to\\nvary calculated values of M$_s$ and MAE by up to 9.6$\\\\times$10$^5$ A m$^{-1}$\\nand 14.1$\\\\times$10$^5$ J m$^{-3}$, respectively. Our results suggest that\\ncomposition can be used to optimize magnetic properties for applications in\\nheating, imaging, and recording. This is mainly achieved by varying M$_s$, as\\nthese applications are more sensitive to variation in M$_s$ than MAE.\",\"PeriodicalId\":501259,\"journal\":{\"name\":\"arXiv - PHYS - Atomic and Molecular Clusters\",\"volume\":\"12 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Atomic and Molecular Clusters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2309.09754\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Atomic and Molecular Clusters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2309.09754","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

材料研究中的一个重大挑战是确定成分和性能之间的关系。本文探讨了铁氧体的磁性,特别是磁饱和度(M$_s$)和磁各向异性能(MAE)之间的关系。铁氧体是由磁铁矿(化学式为Fe$_3$O$_4$)衍生而来的材料,由金属元素以某种组合形式组成,如Fe、Mn、Ni、Co、Cu和Zn。它们被用于各种应用,如电磁学、磁热疗和磁成像。在实验上,磁性材料的合成和表征是费时的。为了建立有助于指导合成的见解,我们使用密度泛函理论(DFT)计算铁氧体成分与磁性能之间的关系。具体地说,我们computeM $ _ $, 571年美铁素体结构与formulaeM1 _x M2 _y吗菲美元美元$ _ {3-x-y} O _4美元美元,M1和M2可以锰、镍、有限公司铜和/或Znand 0 \ le x美元\勒1美元和y = 1 - x。通过改变成分,我们可以tovary计算值M $ _ $ 9.6美元,美\ * 10 ^ 5美元一个美元$ ^{1}$ 14.1和$ \ * 10 ^ 5美元$ J M $ ^{3} $,分别。我们的研究结果表明,该成分可用于优化加热,成像和记录应用的磁性能。这主要是通过改变M$_s$来实现的,因为这些应用程序对M$_s$的变化比MAE更敏感。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Computational Exploration of Magnetic Saturation and Anisotropy Energy for Nonstoichiometric Ferrite Compositions
A grand challenge in materials research is identifying the relationship between composition and performance. Herein, we explore this relationship for magnetic properties, specifically magnetic saturation (M$_s$) and magnetic anisotropy energy (MAE) of ferrites. Ferrites are materials derived from magnetite (which has the chemical formulae Fe$_3$O$_4$) that comprise metallic elements in some combination such as Fe, Mn, Ni, Co, Cu and Zn. They are used in a variety of applications such as electromagnetism, magnetic hyperthermia, and magnetic imaging. Experimentally, synthesis and characterization of magnetic materials is time consuming. In order to create insight to help guide synthesis, we compute the relationship between ferrite composition and magnetic properties using density functional theory (DFT). Specifically, we compute M$_s$ and MAE for 571 ferrite structures with the formulae M1$_x$M2$_y$Fe$_{3-x-y}$O$_4$, where M1 and M2 can be Mn, Ni, Co, Cu and/or Zn and 0 $\le$ x $\le$ 1 and y = 1 - x. By varying composition, we were able to vary calculated values of M$_s$ and MAE by up to 9.6$\times$10$^5$ A m$^{-1}$ and 14.1$\times$10$^5$ J m$^{-3}$, respectively. Our results suggest that composition can be used to optimize magnetic properties for applications in heating, imaging, and recording. This is mainly achieved by varying M$_s$, as these applications are more sensitive to variation in M$_s$ than MAE.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Types of Size-Dependent Melting in Fe Nanoclusters: a Molecular Dynamics Study How to manipulate nanoparticle morphology with vacancies Collective states of α-sexithiophene chains inside boron nitride nanotubes Accelerated structure-stability energy-free calculator Structures and infrared spectroscopy of Au$_{10}$ cluster at different temperatures
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1