$\textrm{Fe}_{15}$簇中的爱因斯坦-德哈斯效应

Tomos Wells, Matthew Foulkes, Andrew Horsfield, Sergei Dudarev
{"title":"$\\textrm{Fe}_{15}$簇中的爱因斯坦-德哈斯效应","authors":"Tomos Wells, Matthew Foulkes, Andrew Horsfield, Sergei Dudarev","doi":"arxiv-2308.03130","DOIUrl":null,"url":null,"abstract":"Classical models of spin-lattice coupling are at present unable to accurately\nreproduce results for numerous properties of ferromagnetic materials, such as\nheat transport coefficients or the sudden collapse of the magnetic moment in\nhcp-Fe under pressure. This inability has been attributed to the absence of a\nproper treatment of effects that are inherently quantum mechanical in nature,\nnotably spin-orbit coupling. This paper introduces a time-dependent,\nnon-collinear tight binding model, complete with spin-orbit coupling and vector\nStoner exchange terms, that is capable of simulating the Einstein-de Haas\neffect in a ferromagnetic $\\textrm{Fe}_{15}$ cluster. The tight binding model\nis used to investigate the adiabaticity timescales that determine the response\nof the orbital and spin angular momenta to a rotating, externally applied $B$\nfield, and we show that the qualitative behaviours of our simulations can be\nextrapolated to realistic timescales by use of the adiabatic theorem. An\nanalysis of the trends in the torque contributions with respect to the field\nstrength demonstrates that SOC is necessary to observe a transfer of angular\nmomentum from the electrons to the nuclei at experimentally realistic $B$\nfields. The simulations presented in this paper demonstrate the Einstein-de\nHaas effect from first principles using a Fe cluster.","PeriodicalId":501259,"journal":{"name":"arXiv - PHYS - Atomic and Molecular Clusters","volume":"45 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Einstein-de Haas Effect in an $\\\\textrm{Fe}_{15}$ Cluster\",\"authors\":\"Tomos Wells, Matthew Foulkes, Andrew Horsfield, Sergei Dudarev\",\"doi\":\"arxiv-2308.03130\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Classical models of spin-lattice coupling are at present unable to accurately\\nreproduce results for numerous properties of ferromagnetic materials, such as\\nheat transport coefficients or the sudden collapse of the magnetic moment in\\nhcp-Fe under pressure. This inability has been attributed to the absence of a\\nproper treatment of effects that are inherently quantum mechanical in nature,\\nnotably spin-orbit coupling. This paper introduces a time-dependent,\\nnon-collinear tight binding model, complete with spin-orbit coupling and vector\\nStoner exchange terms, that is capable of simulating the Einstein-de Haas\\neffect in a ferromagnetic $\\\\textrm{Fe}_{15}$ cluster. The tight binding model\\nis used to investigate the adiabaticity timescales that determine the response\\nof the orbital and spin angular momenta to a rotating, externally applied $B$\\nfield, and we show that the qualitative behaviours of our simulations can be\\nextrapolated to realistic timescales by use of the adiabatic theorem. An\\nanalysis of the trends in the torque contributions with respect to the field\\nstrength demonstrates that SOC is necessary to observe a transfer of angular\\nmomentum from the electrons to the nuclei at experimentally realistic $B$\\nfields. The simulations presented in this paper demonstrate the Einstein-de\\nHaas effect from first principles using a Fe cluster.\",\"PeriodicalId\":501259,\"journal\":{\"name\":\"arXiv - PHYS - Atomic and Molecular Clusters\",\"volume\":\"45 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Atomic and Molecular Clusters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2308.03130\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Atomic and Molecular Clusters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2308.03130","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

经典的自旋-晶格耦合模型目前还不能准确地再现铁磁材料的许多特性的结果,如热输运系数或在压力下铁磁磁矩的突然崩溃。这种无能归因于缺乏对本质上固有的量子力学效应的适当处理,特别是自旋轨道耦合。本文介绍了一个具有自旋-轨道耦合和矢量-斯通纳交换项的随时间非共线紧密结合模型,该模型能够模拟铁磁$\textrm{Fe}_{15}$团簇中的爱因斯坦-德哈斯效应。紧密结合模型用于研究确定轨道和自旋角动量对旋转的响应的绝热时间尺度,外部施加的$B$场,我们表明,我们的模拟的定性行为可以通过使用绝热定理外推到现实的时间尺度。转矩对场强的贡献趋势分析表明,在实验实际的$B$场中,为了观察角动量从电子到原子核的转移,SOC是必要的。本文用铁簇从第一原理证明了爱因斯坦-德哈斯效应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The Einstein-de Haas Effect in an $\textrm{Fe}_{15}$ Cluster
Classical models of spin-lattice coupling are at present unable to accurately reproduce results for numerous properties of ferromagnetic materials, such as heat transport coefficients or the sudden collapse of the magnetic moment in hcp-Fe under pressure. This inability has been attributed to the absence of a proper treatment of effects that are inherently quantum mechanical in nature, notably spin-orbit coupling. This paper introduces a time-dependent, non-collinear tight binding model, complete with spin-orbit coupling and vector Stoner exchange terms, that is capable of simulating the Einstein-de Haas effect in a ferromagnetic $\textrm{Fe}_{15}$ cluster. The tight binding model is used to investigate the adiabaticity timescales that determine the response of the orbital and spin angular momenta to a rotating, externally applied $B$ field, and we show that the qualitative behaviours of our simulations can be extrapolated to realistic timescales by use of the adiabatic theorem. An analysis of the trends in the torque contributions with respect to the field strength demonstrates that SOC is necessary to observe a transfer of angular momentum from the electrons to the nuclei at experimentally realistic $B$ fields. The simulations presented in this paper demonstrate the Einstein-de Haas effect from first principles using a Fe cluster.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Types of Size-Dependent Melting in Fe Nanoclusters: a Molecular Dynamics Study How to manipulate nanoparticle morphology with vacancies Collective states of α-sexithiophene chains inside boron nitride nanotubes Accelerated structure-stability energy-free calculator Structures and infrared spectroscopy of Au$_{10}$ cluster at different temperatures
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1