基于可微主体的仿真研究

IF 0.7 4区 计算机科学 Q4 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS ACM Transactions on Modeling and Computer Simulation Pub Date : 2023-01-11 DOI:https://dl.acm.org/doi/10.1145/3565810
Philipp Andelfinger
{"title":"基于可微主体的仿真研究","authors":"Philipp Andelfinger","doi":"https://dl.acm.org/doi/10.1145/3565810","DOIUrl":null,"url":null,"abstract":"<p>Simulation-based optimization using agent-based models is typically carried out under the assumption that the gradient describing the sensitivity of the simulation output to the input cannot be evaluated directly. To still apply gradient-based optimization methods, which efficiently steer the optimization towards a local optimum, gradient estimation methods can be employed. However, many simulation runs are needed to obtain accurate estimates if the input dimension is large. Automatic differentiation (AD) is a family of techniques to compute gradients of general programs directly. Here, we explore the use of AD in the context of time-driven agent-based simulations. By substituting common discrete model elements such as conditional branching with smooth approximations, we obtain gradient information across discontinuities in the model logic. On the examples of a synthetic grid-based model, an epidemics model, and a microscopic traffic model, we study the fidelity and overhead of the differentiable simulations as well as the convergence speed and solution quality achieved by gradient-based optimization compared with gradient-free methods. In traffic signal timing optimization problems with high input dimension, the gradient-based methods exhibit substantially superior performance. A further increase in optimization progress is achieved by combining gradient-free and gradient-based methods. We demonstrate that the approach enables gradient-based training of neural network-controlled simulation entities embedded in the model logic. Finally, we show that the performance overhead of differentiable agent-based simulations can be reduced substantially by exploiting sparsity in the model logic.</p>","PeriodicalId":50943,"journal":{"name":"ACM Transactions on Modeling and Computer Simulation","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2023-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Towards Differentiable Agent-Based Simulation\",\"authors\":\"Philipp Andelfinger\",\"doi\":\"https://dl.acm.org/doi/10.1145/3565810\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Simulation-based optimization using agent-based models is typically carried out under the assumption that the gradient describing the sensitivity of the simulation output to the input cannot be evaluated directly. To still apply gradient-based optimization methods, which efficiently steer the optimization towards a local optimum, gradient estimation methods can be employed. However, many simulation runs are needed to obtain accurate estimates if the input dimension is large. Automatic differentiation (AD) is a family of techniques to compute gradients of general programs directly. Here, we explore the use of AD in the context of time-driven agent-based simulations. By substituting common discrete model elements such as conditional branching with smooth approximations, we obtain gradient information across discontinuities in the model logic. On the examples of a synthetic grid-based model, an epidemics model, and a microscopic traffic model, we study the fidelity and overhead of the differentiable simulations as well as the convergence speed and solution quality achieved by gradient-based optimization compared with gradient-free methods. In traffic signal timing optimization problems with high input dimension, the gradient-based methods exhibit substantially superior performance. A further increase in optimization progress is achieved by combining gradient-free and gradient-based methods. We demonstrate that the approach enables gradient-based training of neural network-controlled simulation entities embedded in the model logic. Finally, we show that the performance overhead of differentiable agent-based simulations can be reduced substantially by exploiting sparsity in the model logic.</p>\",\"PeriodicalId\":50943,\"journal\":{\"name\":\"ACM Transactions on Modeling and Computer Simulation\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-01-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Modeling and Computer Simulation\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/https://dl.acm.org/doi/10.1145/3565810\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Modeling and Computer Simulation","FirstCategoryId":"94","ListUrlMain":"https://doi.org/https://dl.acm.org/doi/10.1145/3565810","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

使用基于智能体的模型进行基于仿真的优化通常是在不能直接评估描述仿真输出对输入灵敏度的梯度的假设下进行的。为了使基于梯度的优化方法有效地将优化引向局部最优,可以使用梯度估计方法。然而,如果输入尺寸较大,则需要多次模拟运行才能获得准确的估计。自动微分(AD)是一种直接计算一般程序梯度的技术。在这里,我们探讨了AD在基于时间驱动的智能体模拟中的使用。通过用光滑近似代替条件分支等常见离散模型元素,我们获得了模型逻辑中跨不连续点的梯度信息。以基于综合网格的模型、流行病模型和微观交通模型为例,研究了基于梯度优化与无梯度优化相比可微模拟的保真度和开销,以及收敛速度和解质量。在具有高输入维数的交通信号配时优化问题中,基于梯度的方法表现出明显的优越性。通过结合无梯度和基于梯度的方法,进一步提高了优化进度。我们证明了该方法能够基于梯度的训练嵌入在模型逻辑中的神经网络控制的仿真实体。最后,我们表明,通过利用模型逻辑中的稀疏性,可以大大降低基于可微代理的模拟的性能开销。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Towards Differentiable Agent-Based Simulation

Simulation-based optimization using agent-based models is typically carried out under the assumption that the gradient describing the sensitivity of the simulation output to the input cannot be evaluated directly. To still apply gradient-based optimization methods, which efficiently steer the optimization towards a local optimum, gradient estimation methods can be employed. However, many simulation runs are needed to obtain accurate estimates if the input dimension is large. Automatic differentiation (AD) is a family of techniques to compute gradients of general programs directly. Here, we explore the use of AD in the context of time-driven agent-based simulations. By substituting common discrete model elements such as conditional branching with smooth approximations, we obtain gradient information across discontinuities in the model logic. On the examples of a synthetic grid-based model, an epidemics model, and a microscopic traffic model, we study the fidelity and overhead of the differentiable simulations as well as the convergence speed and solution quality achieved by gradient-based optimization compared with gradient-free methods. In traffic signal timing optimization problems with high input dimension, the gradient-based methods exhibit substantially superior performance. A further increase in optimization progress is achieved by combining gradient-free and gradient-based methods. We demonstrate that the approach enables gradient-based training of neural network-controlled simulation entities embedded in the model logic. Finally, we show that the performance overhead of differentiable agent-based simulations can be reduced substantially by exploiting sparsity in the model logic.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACM Transactions on Modeling and Computer Simulation
ACM Transactions on Modeling and Computer Simulation 工程技术-计算机:跨学科应用
CiteScore
2.50
自引率
22.20%
发文量
29
审稿时长
>12 weeks
期刊介绍: The ACM Transactions on Modeling and Computer Simulation (TOMACS) provides a single archival source for the publication of high-quality research and developmental results referring to all phases of the modeling and simulation life cycle. The subjects of emphasis are discrete event simulation, combined discrete and continuous simulation, as well as Monte Carlo methods. The use of simulation techniques is pervasive, extending to virtually all the sciences. TOMACS serves to enhance the understanding, improve the practice, and increase the utilization of computer simulation. Submissions should contribute to the realization of these objectives, and papers treating applications should stress their contributions vis-á-vis these objectives.
期刊最新文献
Reproducibility Report for the Paper "Performance Evaluation of Spintronic-Based Spiking Neural Networks Using Parallel Discrete-Event Simulation" Data Farming the Parameters of Simulation-Optimization Solvers Modeling of biogas production from hydrothermal carbonization products in a continuous anaerobic digester. Optimized Real-Time Stochastic Model of Power Electronic Converters based on FPGA Virtual Time III, Part 3: Throttling and Message Cancellation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1