{"title":"利用马尔可夫到达过程估计多类服务需求分布","authors":"Runan Wang, Giuliano Casale, Antonio Filieri","doi":"https://dl.acm.org/doi/10.1145/3570924","DOIUrl":null,"url":null,"abstract":"<p>Building performance models for software services in DevOps is costly and error-prone. Accurate service demand distribution estimation is critical to precisely modeling queueing behaviors and performance prediction. However, current estimation methods focus on capturing the mean service demand, disregarding higher-order moments of the distribution that still can largely affect prediction accuracy. To address this limitation, we propose to estimate higher moments of the service demand distribution for a microservice from monitoring traces. We first generate a closed queueing model to abstract software performance and use it to model the departure process of requests completed by the software service as a Markovian arrival process (MAP). This allows formulating the estimation of service demand into an optimization problem, which aims to find the first multiple moments of the service demand distribution that maximize the likelihood of the MAP using generated the measured inter-departure times. We then estimate the service demand distribution for different classes of service with a maximum likelihood algorithm and novel heuristics to mitigate the computational cost of the optimization process for scalability. We apply our method to real traces from a microservice-based application and demonstrate that its estimations lead to greater prediction accuracy than exponential distributions assumed in traditional service demand estimation approaches for software services.</p>","PeriodicalId":50943,"journal":{"name":"ACM Transactions on Modeling and Computer Simulation","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2023-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Estimating Multiclass Service Demand Distributions Using Markovian Arrival Processes\",\"authors\":\"Runan Wang, Giuliano Casale, Antonio Filieri\",\"doi\":\"https://dl.acm.org/doi/10.1145/3570924\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Building performance models for software services in DevOps is costly and error-prone. Accurate service demand distribution estimation is critical to precisely modeling queueing behaviors and performance prediction. However, current estimation methods focus on capturing the mean service demand, disregarding higher-order moments of the distribution that still can largely affect prediction accuracy. To address this limitation, we propose to estimate higher moments of the service demand distribution for a microservice from monitoring traces. We first generate a closed queueing model to abstract software performance and use it to model the departure process of requests completed by the software service as a Markovian arrival process (MAP). This allows formulating the estimation of service demand into an optimization problem, which aims to find the first multiple moments of the service demand distribution that maximize the likelihood of the MAP using generated the measured inter-departure times. We then estimate the service demand distribution for different classes of service with a maximum likelihood algorithm and novel heuristics to mitigate the computational cost of the optimization process for scalability. We apply our method to real traces from a microservice-based application and demonstrate that its estimations lead to greater prediction accuracy than exponential distributions assumed in traditional service demand estimation approaches for software services.</p>\",\"PeriodicalId\":50943,\"journal\":{\"name\":\"ACM Transactions on Modeling and Computer Simulation\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-02-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Modeling and Computer Simulation\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/https://dl.acm.org/doi/10.1145/3570924\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Modeling and Computer Simulation","FirstCategoryId":"94","ListUrlMain":"https://doi.org/https://dl.acm.org/doi/10.1145/3570924","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Estimating Multiclass Service Demand Distributions Using Markovian Arrival Processes
Building performance models for software services in DevOps is costly and error-prone. Accurate service demand distribution estimation is critical to precisely modeling queueing behaviors and performance prediction. However, current estimation methods focus on capturing the mean service demand, disregarding higher-order moments of the distribution that still can largely affect prediction accuracy. To address this limitation, we propose to estimate higher moments of the service demand distribution for a microservice from monitoring traces. We first generate a closed queueing model to abstract software performance and use it to model the departure process of requests completed by the software service as a Markovian arrival process (MAP). This allows formulating the estimation of service demand into an optimization problem, which aims to find the first multiple moments of the service demand distribution that maximize the likelihood of the MAP using generated the measured inter-departure times. We then estimate the service demand distribution for different classes of service with a maximum likelihood algorithm and novel heuristics to mitigate the computational cost of the optimization process for scalability. We apply our method to real traces from a microservice-based application and demonstrate that its estimations lead to greater prediction accuracy than exponential distributions assumed in traditional service demand estimation approaches for software services.
期刊介绍:
The ACM Transactions on Modeling and Computer Simulation (TOMACS) provides a single archival source for the publication of high-quality research and developmental results referring to all phases of the modeling and simulation life cycle. The subjects of emphasis are discrete event simulation, combined discrete and continuous simulation, as well as Monte Carlo methods.
The use of simulation techniques is pervasive, extending to virtually all the sciences. TOMACS serves to enhance the understanding, improve the practice, and increase the utilization of computer simulation. Submissions should contribute to the realization of these objectives, and papers treating applications should stress their contributions vis-á-vis these objectives.