Cyrille Mascart, David Hill, Alexandre Muzy, Patricia Reynaud-Bouret
{"title":"点过程稀疏图的高效模拟","authors":"Cyrille Mascart, David Hill, Alexandre Muzy, Patricia Reynaud-Bouret","doi":"https://dl.acm.org/doi/10.1145/3565809","DOIUrl":null,"url":null,"abstract":"<p>We derive new discrete event simulation algorithms for marked time point processes. The main idea is to couple a special structure, namely the associated local independence graph, as defined by Didelez, with the activity tracking algorithm of Muzy for achieving high-performance asynchronous simulations. With respect to classical algorithms, this allows us to drastically reduce the computational complexity, especially when the graph is sparse.</p>","PeriodicalId":50943,"journal":{"name":"ACM Transactions on Modeling and Computer Simulation","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2023-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Efficient Simulation of Sparse Graphs of Point Processes\",\"authors\":\"Cyrille Mascart, David Hill, Alexandre Muzy, Patricia Reynaud-Bouret\",\"doi\":\"https://dl.acm.org/doi/10.1145/3565809\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We derive new discrete event simulation algorithms for marked time point processes. The main idea is to couple a special structure, namely the associated local independence graph, as defined by Didelez, with the activity tracking algorithm of Muzy for achieving high-performance asynchronous simulations. With respect to classical algorithms, this allows us to drastically reduce the computational complexity, especially when the graph is sparse.</p>\",\"PeriodicalId\":50943,\"journal\":{\"name\":\"ACM Transactions on Modeling and Computer Simulation\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-02-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Modeling and Computer Simulation\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/https://dl.acm.org/doi/10.1145/3565809\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Modeling and Computer Simulation","FirstCategoryId":"94","ListUrlMain":"https://doi.org/https://dl.acm.org/doi/10.1145/3565809","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Efficient Simulation of Sparse Graphs of Point Processes
We derive new discrete event simulation algorithms for marked time point processes. The main idea is to couple a special structure, namely the associated local independence graph, as defined by Didelez, with the activity tracking algorithm of Muzy for achieving high-performance asynchronous simulations. With respect to classical algorithms, this allows us to drastically reduce the computational complexity, especially when the graph is sparse.
期刊介绍:
The ACM Transactions on Modeling and Computer Simulation (TOMACS) provides a single archival source for the publication of high-quality research and developmental results referring to all phases of the modeling and simulation life cycle. The subjects of emphasis are discrete event simulation, combined discrete and continuous simulation, as well as Monte Carlo methods.
The use of simulation techniques is pervasive, extending to virtually all the sciences. TOMACS serves to enhance the understanding, improve the practice, and increase the utilization of computer simulation. Submissions should contribute to the realization of these objectives, and papers treating applications should stress their contributions vis-á-vis these objectives.