{"title":"韩国窄养单胞菌降解孔雀石绿的酶分析、降解动力学、响应面优化及重金属耐受性","authors":"Shreya Biswas, Tuhin Kahali, Anwesha Mukherjee, Debasmita Chakraborty, Chayan Guha, Tathagata Adhikary, Pratik Das, Nandan Kumar Jana, Suvendu Manna, Piyali Basak","doi":"10.1080/10889868.2022.2143472","DOIUrl":null,"url":null,"abstract":"<p><b>Abstract</b></p><p><i>Stenotrophomonas koreensis</i>, was isolated from a textile effluent and employed to biologically degrade 98.8% of the recalcitrant toxic dye malachite green in 4 h in the absence of any supplements or media. Chromatographic and Spectroscopic analysis confirmed the degradation of the dye. According to Response Surface Methodology, the optimum conditions for biodegradation were pH 6, inoculum size 6 mL (initial concentration Log<sub>10</sub>CFU/mL = 6.2), and temperature 45 °C. More than 98% decolorization was achieved within 2.5 h of the addition of soymeal extract or peptone. One of the most promising features of this strain is that even in the presence of heavy metals, <i>S. koreensis</i> actively degraded the dye. The bacteria biodegraded malachite green following the first-order reaction kinetics. LC-MS analysis of the degradation product yielded several intermediates like Michler’s ketone (m/z 269), 4-N,N-dimethylaminophenol (m/z 137), Benzophenone (m/z 182), N,N-dimethylaniline (m/z 121), 4-(N-methylamino)-benzophenone (m/z 211), 4-aminobenzaldehyde (m/z 121), anionic canonical form of 4-aminobenzaldehyde (m/z 120), 4-(N,N-dimethylamino)benzoic acid (m/z 165), 4-(N-methylamino) benzoic acid (m/z 152). The enzymes responsible for the malachite green degradation were tyrosinase, Malachite Green reductase, and NADH-DCIP reductase. The present work is the first to report the degradation of malachite green by <i>S. koreensis</i>.</p>","PeriodicalId":8935,"journal":{"name":"Bioremediation Journal","volume":"31 6","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2022-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enzymes analysis, degradation kinetics, response surface optimization and heavy metal tolerance of the biodegradation of malachite green by Stenotrophomonas koreensis\",\"authors\":\"Shreya Biswas, Tuhin Kahali, Anwesha Mukherjee, Debasmita Chakraborty, Chayan Guha, Tathagata Adhikary, Pratik Das, Nandan Kumar Jana, Suvendu Manna, Piyali Basak\",\"doi\":\"10.1080/10889868.2022.2143472\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><b>Abstract</b></p><p><i>Stenotrophomonas koreensis</i>, was isolated from a textile effluent and employed to biologically degrade 98.8% of the recalcitrant toxic dye malachite green in 4 h in the absence of any supplements or media. Chromatographic and Spectroscopic analysis confirmed the degradation of the dye. According to Response Surface Methodology, the optimum conditions for biodegradation were pH 6, inoculum size 6 mL (initial concentration Log<sub>10</sub>CFU/mL = 6.2), and temperature 45 °C. More than 98% decolorization was achieved within 2.5 h of the addition of soymeal extract or peptone. One of the most promising features of this strain is that even in the presence of heavy metals, <i>S. koreensis</i> actively degraded the dye. The bacteria biodegraded malachite green following the first-order reaction kinetics. LC-MS analysis of the degradation product yielded several intermediates like Michler’s ketone (m/z 269), 4-N,N-dimethylaminophenol (m/z 137), Benzophenone (m/z 182), N,N-dimethylaniline (m/z 121), 4-(N-methylamino)-benzophenone (m/z 211), 4-aminobenzaldehyde (m/z 121), anionic canonical form of 4-aminobenzaldehyde (m/z 120), 4-(N,N-dimethylamino)benzoic acid (m/z 165), 4-(N-methylamino) benzoic acid (m/z 152). The enzymes responsible for the malachite green degradation were tyrosinase, Malachite Green reductase, and NADH-DCIP reductase. The present work is the first to report the degradation of malachite green by <i>S. koreensis</i>.</p>\",\"PeriodicalId\":8935,\"journal\":{\"name\":\"Bioremediation Journal\",\"volume\":\"31 6\",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2022-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioremediation Journal\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1080/10889868.2022.2143472\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioremediation Journal","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1080/10889868.2022.2143472","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Enzymes analysis, degradation kinetics, response surface optimization and heavy metal tolerance of the biodegradation of malachite green by Stenotrophomonas koreensis
Abstract
Stenotrophomonas koreensis, was isolated from a textile effluent and employed to biologically degrade 98.8% of the recalcitrant toxic dye malachite green in 4 h in the absence of any supplements or media. Chromatographic and Spectroscopic analysis confirmed the degradation of the dye. According to Response Surface Methodology, the optimum conditions for biodegradation were pH 6, inoculum size 6 mL (initial concentration Log10CFU/mL = 6.2), and temperature 45 °C. More than 98% decolorization was achieved within 2.5 h of the addition of soymeal extract or peptone. One of the most promising features of this strain is that even in the presence of heavy metals, S. koreensis actively degraded the dye. The bacteria biodegraded malachite green following the first-order reaction kinetics. LC-MS analysis of the degradation product yielded several intermediates like Michler’s ketone (m/z 269), 4-N,N-dimethylaminophenol (m/z 137), Benzophenone (m/z 182), N,N-dimethylaniline (m/z 121), 4-(N-methylamino)-benzophenone (m/z 211), 4-aminobenzaldehyde (m/z 121), anionic canonical form of 4-aminobenzaldehyde (m/z 120), 4-(N,N-dimethylamino)benzoic acid (m/z 165), 4-(N-methylamino) benzoic acid (m/z 152). The enzymes responsible for the malachite green degradation were tyrosinase, Malachite Green reductase, and NADH-DCIP reductase. The present work is the first to report the degradation of malachite green by S. koreensis.
期刊介绍:
Bioremediation Journal is a peer-reviewed quarterly that publishes current, original laboratory and field research in bioremediation, the use of biological and supporting physical treatments to treat contaminated soil and groundwater. The journal rapidly disseminates new information on emerging and maturing bioremediation technologies and integrates scientific research and engineering practices. The authors, editors, and readers are scientists, field engineers, site remediation managers, and regulatory experts from the academic, industrial, and government sectors worldwide.
High-quality, original articles make up the primary content. Other contributions are technical notes, short communications, and occasional invited review articles.