Mostafa Rizk, Amer Baghdadi, Michel Jezequel, Yasser Mohanna, Youssef Atat
{"title":"数字通信应用中灵活高效架构的无指令集计算机设计经验:MIMO turbo检测和通用turbo映射的两个案例研究","authors":"Mostafa Rizk, Amer Baghdadi, Michel Jezequel, Yasser Mohanna, Youssef Atat","doi":"10.1007/s10617-021-09245-x","DOIUrl":null,"url":null,"abstract":"<p>The emerging flexibility need in designing application-specific processors dedicated for modules of digital receiver imposes a new design metric, which is added to the requirements of efficiency and productivity. In order to cope with the emerging flexibility requirement combined with the best performance efficiency, many application-specific processor design approaches have been proposed and investigated. In general, available design approaches that adopt dynamic scheduling of instructions add an overhead due to the instruction decoding. To minimize this overhead, several approaches have been introduced, which opt static scheduling. In this context, No-Instruction-Set-Computer (NISC) concept has been introduced to design application-specific processors without an instruction set. NISC concept proposes that there is no need to first design and then use an instruction set when the hardware is programmed by its designers rather than its users. NISC designing approach offers a good compromise between flexibility, productivity, and quality for the design of a digital system. In our work, NISC approach is explored through the design of flexible and efficient architectures dedicated for digital communication applications which fulfill the requirements imposed by multiple emergent communication standards. This paper introduces briefly the NISC concept and the corresponding design methodology. Also, it provides an overview of the related design approach. In addition, the relevance of NISC in realizing flexible and efficient implementation in the domain of digital communication is demonstrated through two case studies on MIMO turbo detection and universal turbo demapping. Both designed NISC-based architectures have been compared to state-of-the-art ASIP-based architectures using similar computational resources and supporting same flexibility parameters. The obtained results show that the proposed NISC-based architectures provide a significant improvement in execution performance while having reduced implementation costs. The results also illustrates how the control memory requirements depend on the application and the devised architecture choices. In the detector module, the adopted re-usability of allocated resources imposes separate controlling of each component; hence, additional control signals are implied. Whereas for the demapper module, implemented hardware components are considered to perform specific operations and to deal with the same type of data; hence, the number of control signals can be reduced significantly.</p>","PeriodicalId":50594,"journal":{"name":"Design Automation for Embedded Systems","volume":"51 5","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2021-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"No-instruction-set-computer design experience of flexible and efficient architectures for digital communication applications: two case studies on MIMO turbo detection and universal turbo demapping\",\"authors\":\"Mostafa Rizk, Amer Baghdadi, Michel Jezequel, Yasser Mohanna, Youssef Atat\",\"doi\":\"10.1007/s10617-021-09245-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The emerging flexibility need in designing application-specific processors dedicated for modules of digital receiver imposes a new design metric, which is added to the requirements of efficiency and productivity. In order to cope with the emerging flexibility requirement combined with the best performance efficiency, many application-specific processor design approaches have been proposed and investigated. In general, available design approaches that adopt dynamic scheduling of instructions add an overhead due to the instruction decoding. To minimize this overhead, several approaches have been introduced, which opt static scheduling. In this context, No-Instruction-Set-Computer (NISC) concept has been introduced to design application-specific processors without an instruction set. NISC concept proposes that there is no need to first design and then use an instruction set when the hardware is programmed by its designers rather than its users. NISC designing approach offers a good compromise between flexibility, productivity, and quality for the design of a digital system. In our work, NISC approach is explored through the design of flexible and efficient architectures dedicated for digital communication applications which fulfill the requirements imposed by multiple emergent communication standards. This paper introduces briefly the NISC concept and the corresponding design methodology. Also, it provides an overview of the related design approach. In addition, the relevance of NISC in realizing flexible and efficient implementation in the domain of digital communication is demonstrated through two case studies on MIMO turbo detection and universal turbo demapping. Both designed NISC-based architectures have been compared to state-of-the-art ASIP-based architectures using similar computational resources and supporting same flexibility parameters. The obtained results show that the proposed NISC-based architectures provide a significant improvement in execution performance while having reduced implementation costs. The results also illustrates how the control memory requirements depend on the application and the devised architecture choices. In the detector module, the adopted re-usability of allocated resources imposes separate controlling of each component; hence, additional control signals are implied. Whereas for the demapper module, implemented hardware components are considered to perform specific operations and to deal with the same type of data; hence, the number of control signals can be reduced significantly.</p>\",\"PeriodicalId\":50594,\"journal\":{\"name\":\"Design Automation for Embedded Systems\",\"volume\":\"51 5\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2021-01-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Design Automation for Embedded Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s10617-021-09245-x\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Design Automation for Embedded Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s10617-021-09245-x","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
No-instruction-set-computer design experience of flexible and efficient architectures for digital communication applications: two case studies on MIMO turbo detection and universal turbo demapping
The emerging flexibility need in designing application-specific processors dedicated for modules of digital receiver imposes a new design metric, which is added to the requirements of efficiency and productivity. In order to cope with the emerging flexibility requirement combined with the best performance efficiency, many application-specific processor design approaches have been proposed and investigated. In general, available design approaches that adopt dynamic scheduling of instructions add an overhead due to the instruction decoding. To minimize this overhead, several approaches have been introduced, which opt static scheduling. In this context, No-Instruction-Set-Computer (NISC) concept has been introduced to design application-specific processors without an instruction set. NISC concept proposes that there is no need to first design and then use an instruction set when the hardware is programmed by its designers rather than its users. NISC designing approach offers a good compromise between flexibility, productivity, and quality for the design of a digital system. In our work, NISC approach is explored through the design of flexible and efficient architectures dedicated for digital communication applications which fulfill the requirements imposed by multiple emergent communication standards. This paper introduces briefly the NISC concept and the corresponding design methodology. Also, it provides an overview of the related design approach. In addition, the relevance of NISC in realizing flexible and efficient implementation in the domain of digital communication is demonstrated through two case studies on MIMO turbo detection and universal turbo demapping. Both designed NISC-based architectures have been compared to state-of-the-art ASIP-based architectures using similar computational resources and supporting same flexibility parameters. The obtained results show that the proposed NISC-based architectures provide a significant improvement in execution performance while having reduced implementation costs. The results also illustrates how the control memory requirements depend on the application and the devised architecture choices. In the detector module, the adopted re-usability of allocated resources imposes separate controlling of each component; hence, additional control signals are implied. Whereas for the demapper module, implemented hardware components are considered to perform specific operations and to deal with the same type of data; hence, the number of control signals can be reduced significantly.
期刊介绍:
Embedded (electronic) systems have become the electronic engines of modern consumer and industrial devices, from automobiles to satellites, from washing machines to high-definition TVs, and from cellular phones to complete base stations. These embedded systems encompass a variety of hardware and software components which implement a wide range of functions including digital, analog and RF parts.
Although embedded systems have been designed for decades, the systematic design of such systems with well defined methodologies, automation tools and technologies has gained attention primarily in the last decade. Advances in silicon technology and increasingly demanding applications have significantly expanded the scope and complexity of embedded systems. These systems are only now becoming possible due to advances in methodologies, tools, architectures and design techniques.
Design Automation for Embedded Systems is a multidisciplinary journal which addresses the systematic design of embedded systems, focusing primarily on tools, methodologies and architectures for embedded systems, including HW/SW co-design, simulation and modeling approaches, synthesis techniques, architectures and design exploration, among others.
Design Automation for Embedded Systems offers a forum for scientist and engineers to report on their latest works on algorithms, tools, architectures, case studies and real design examples related to embedded systems hardware and software.
Design Automation for Embedded Systems is an innovative journal which distinguishes itself by welcoming high-quality papers on the methodology, tools, architectures and design of electronic embedded systems, leading to a true multidisciplinary system design journal.