{"title":"硬件/软件协同设计中的划分模型、求解算法和算法并行化研究综述","authors":"Neng Hou, Xiaohu Yan, Fazhi He","doi":"10.1007/s10617-019-09220-7","DOIUrl":null,"url":null,"abstract":"In electronic design automation, hardware/software co-design significantly reduces the time-to-market and improves the performance of embedded systems. With the increasing scale of applications and complexity of hardware architecture of embedded systems, hardware/software co-design is still a research hotspot. As hardware/software co-design is a wide topic, this paper focuses on major developments of three important aspects related to hardware/software partitioning, which has great effects on the performance of embedded systems. Firstly, various partitioning models including hardware architectures and abstract models are surveyed. Secondly, classical and new algorithms for hardware/software partitioning are classified and analyzed. Thirdly, existing parallel algorithms for hardware/software co-design are discussed in details. Finally, possible research directions are pointed out in conclusion.","PeriodicalId":50594,"journal":{"name":"Design Automation for Embedded Systems","volume":"49 3","pages":"57-77"},"PeriodicalIF":0.9000,"publicationDate":"2019-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"26","resultStr":"{\"title\":\"A survey on partitioning models, solution algorithms and algorithm parallelization for hardware/software co-design\",\"authors\":\"Neng Hou, Xiaohu Yan, Fazhi He\",\"doi\":\"10.1007/s10617-019-09220-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In electronic design automation, hardware/software co-design significantly reduces the time-to-market and improves the performance of embedded systems. With the increasing scale of applications and complexity of hardware architecture of embedded systems, hardware/software co-design is still a research hotspot. As hardware/software co-design is a wide topic, this paper focuses on major developments of three important aspects related to hardware/software partitioning, which has great effects on the performance of embedded systems. Firstly, various partitioning models including hardware architectures and abstract models are surveyed. Secondly, classical and new algorithms for hardware/software partitioning are classified and analyzed. Thirdly, existing parallel algorithms for hardware/software co-design are discussed in details. Finally, possible research directions are pointed out in conclusion.\",\"PeriodicalId\":50594,\"journal\":{\"name\":\"Design Automation for Embedded Systems\",\"volume\":\"49 3\",\"pages\":\"57-77\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2019-04-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"26\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Design Automation for Embedded Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s10617-019-09220-7\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Design Automation for Embedded Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s10617-019-09220-7","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
A survey on partitioning models, solution algorithms and algorithm parallelization for hardware/software co-design
In electronic design automation, hardware/software co-design significantly reduces the time-to-market and improves the performance of embedded systems. With the increasing scale of applications and complexity of hardware architecture of embedded systems, hardware/software co-design is still a research hotspot. As hardware/software co-design is a wide topic, this paper focuses on major developments of three important aspects related to hardware/software partitioning, which has great effects on the performance of embedded systems. Firstly, various partitioning models including hardware architectures and abstract models are surveyed. Secondly, classical and new algorithms for hardware/software partitioning are classified and analyzed. Thirdly, existing parallel algorithms for hardware/software co-design are discussed in details. Finally, possible research directions are pointed out in conclusion.
期刊介绍:
Embedded (electronic) systems have become the electronic engines of modern consumer and industrial devices, from automobiles to satellites, from washing machines to high-definition TVs, and from cellular phones to complete base stations. These embedded systems encompass a variety of hardware and software components which implement a wide range of functions including digital, analog and RF parts.
Although embedded systems have been designed for decades, the systematic design of such systems with well defined methodologies, automation tools and technologies has gained attention primarily in the last decade. Advances in silicon technology and increasingly demanding applications have significantly expanded the scope and complexity of embedded systems. These systems are only now becoming possible due to advances in methodologies, tools, architectures and design techniques.
Design Automation for Embedded Systems is a multidisciplinary journal which addresses the systematic design of embedded systems, focusing primarily on tools, methodologies and architectures for embedded systems, including HW/SW co-design, simulation and modeling approaches, synthesis techniques, architectures and design exploration, among others.
Design Automation for Embedded Systems offers a forum for scientist and engineers to report on their latest works on algorithms, tools, architectures, case studies and real design examples related to embedded systems hardware and software.
Design Automation for Embedded Systems is an innovative journal which distinguishes itself by welcoming high-quality papers on the methodology, tools, architectures and design of electronic embedded systems, leading to a true multidisciplinary system design journal.