{"title":"基于深度信念网络算法的磁悬浮列车嵌入式控制系统的深度学习控制器设计","authors":"Ding-gang Gao, You-gang Sun, Shi-hui Luo, Guo-bin Lin, Lai-sheng Tong","doi":"10.1007/s10617-020-09237-3","DOIUrl":null,"url":null,"abstract":"<p>The maglev train has been successful in practice as a new type of ground transportation. Owing to the inherent nonlinearity and open-loop instability of the electromagnetic suspension (EMS) system, an analogue or a digital controller is used to control the maglev trains’ stability. With the rapid development of embedded systems and artificial intelligence, intelligent digital control has begun to replace the conventional analogue control technology creating a new approach to the EMS control system. This paper proposes a hardware module for an embedded levitation controller based on digital signal processor and field programmable gate array, hence producing an open loop mathematical model of the embedded maglev control system. The deep learning controller is then developed based on a deep belief network (DBN) algorithm and a proportional integral derivative feedback controller. The simulations are conducted in the MATLAB environment after training the DBN. Simulation results are compared with those obtained from the conventional controller. Finally, experiments are implemented to examine the feasibility in practice of the application of the DBN into a maglev embedded control system. The system, with the proposed controller, can accurately track the target airgap of 8 mm. The maximum tracking error of sinusoidal trajectory is 0.17 mm and the maximum tracking error of step trajectory is 0.98 mm. Both simulation and experimental results are included in this paper to show that the proposed deep learning controller can be more robust and less complicated to implement in maglev control applications.</p>","PeriodicalId":50594,"journal":{"name":"Design Automation for Embedded Systems","volume":"48 11","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2020-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Deep learning controller design of embedded control system for maglev train via deep belief network algorithm\",\"authors\":\"Ding-gang Gao, You-gang Sun, Shi-hui Luo, Guo-bin Lin, Lai-sheng Tong\",\"doi\":\"10.1007/s10617-020-09237-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The maglev train has been successful in practice as a new type of ground transportation. Owing to the inherent nonlinearity and open-loop instability of the electromagnetic suspension (EMS) system, an analogue or a digital controller is used to control the maglev trains’ stability. With the rapid development of embedded systems and artificial intelligence, intelligent digital control has begun to replace the conventional analogue control technology creating a new approach to the EMS control system. This paper proposes a hardware module for an embedded levitation controller based on digital signal processor and field programmable gate array, hence producing an open loop mathematical model of the embedded maglev control system. The deep learning controller is then developed based on a deep belief network (DBN) algorithm and a proportional integral derivative feedback controller. The simulations are conducted in the MATLAB environment after training the DBN. Simulation results are compared with those obtained from the conventional controller. Finally, experiments are implemented to examine the feasibility in practice of the application of the DBN into a maglev embedded control system. The system, with the proposed controller, can accurately track the target airgap of 8 mm. The maximum tracking error of sinusoidal trajectory is 0.17 mm and the maximum tracking error of step trajectory is 0.98 mm. Both simulation and experimental results are included in this paper to show that the proposed deep learning controller can be more robust and less complicated to implement in maglev control applications.</p>\",\"PeriodicalId\":50594,\"journal\":{\"name\":\"Design Automation for Embedded Systems\",\"volume\":\"48 11\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2020-04-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Design Automation for Embedded Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s10617-020-09237-3\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Design Automation for Embedded Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s10617-020-09237-3","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
Deep learning controller design of embedded control system for maglev train via deep belief network algorithm
The maglev train has been successful in practice as a new type of ground transportation. Owing to the inherent nonlinearity and open-loop instability of the electromagnetic suspension (EMS) system, an analogue or a digital controller is used to control the maglev trains’ stability. With the rapid development of embedded systems and artificial intelligence, intelligent digital control has begun to replace the conventional analogue control technology creating a new approach to the EMS control system. This paper proposes a hardware module for an embedded levitation controller based on digital signal processor and field programmable gate array, hence producing an open loop mathematical model of the embedded maglev control system. The deep learning controller is then developed based on a deep belief network (DBN) algorithm and a proportional integral derivative feedback controller. The simulations are conducted in the MATLAB environment after training the DBN. Simulation results are compared with those obtained from the conventional controller. Finally, experiments are implemented to examine the feasibility in practice of the application of the DBN into a maglev embedded control system. The system, with the proposed controller, can accurately track the target airgap of 8 mm. The maximum tracking error of sinusoidal trajectory is 0.17 mm and the maximum tracking error of step trajectory is 0.98 mm. Both simulation and experimental results are included in this paper to show that the proposed deep learning controller can be more robust and less complicated to implement in maglev control applications.
期刊介绍:
Embedded (electronic) systems have become the electronic engines of modern consumer and industrial devices, from automobiles to satellites, from washing machines to high-definition TVs, and from cellular phones to complete base stations. These embedded systems encompass a variety of hardware and software components which implement a wide range of functions including digital, analog and RF parts.
Although embedded systems have been designed for decades, the systematic design of such systems with well defined methodologies, automation tools and technologies has gained attention primarily in the last decade. Advances in silicon technology and increasingly demanding applications have significantly expanded the scope and complexity of embedded systems. These systems are only now becoming possible due to advances in methodologies, tools, architectures and design techniques.
Design Automation for Embedded Systems is a multidisciplinary journal which addresses the systematic design of embedded systems, focusing primarily on tools, methodologies and architectures for embedded systems, including HW/SW co-design, simulation and modeling approaches, synthesis techniques, architectures and design exploration, among others.
Design Automation for Embedded Systems offers a forum for scientist and engineers to report on their latest works on algorithms, tools, architectures, case studies and real design examples related to embedded systems hardware and software.
Design Automation for Embedded Systems is an innovative journal which distinguishes itself by welcoming high-quality papers on the methodology, tools, architectures and design of electronic embedded systems, leading to a true multidisciplinary system design journal.