{"title":"基于反事实学习的多元推荐自监督图模型","authors":"Pu Ji, Minghui Yang, Rui Sun","doi":"10.1016/j.is.2023.102322","DOIUrl":null,"url":null,"abstract":"<div><p>Consumers’ needs present a trend of diversification, which causes the emergence of diversified recommendation systems. However, existing diversified recommendation research mostly focuses on objective function construction rather than on the root cause that limits diversity—namely, imbalanced data distribution. This study considers how to balance data distribution to improve recommendation diversity. We propose a novel self-supervised graph model based on counterfactual learning (SSG-CL) for diversified recommendation. SSG-CL first distinguishes the dominant and disadvantageous categories for each user based on long-tail theory. It then introduces counterfactual learning to construct an auxiliary view with relatively balanced distribution among the dominant and disadvantageous categories. Next, we conduct contrastive learning between the user–item interaction graph and the auxiliary view as the self-supervised auxiliary task that aims to improve recommendation diversity. Finally, SSG-CL leverages a multitask training strategy to jointly optimize the main accuracy-oriented recommendation task and the self-supervised auxiliary task. Finally, we conduct experimental studies on real-world datasets, and the results indicate good SSG-CL performance in terms of accuracy and diversity.</p></div>","PeriodicalId":50363,"journal":{"name":"Information Systems","volume":"121 ","pages":"Article 102322"},"PeriodicalIF":3.0000,"publicationDate":"2023-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A novel self-supervised graph model based on counterfactual learning for diversified recommendation\",\"authors\":\"Pu Ji, Minghui Yang, Rui Sun\",\"doi\":\"10.1016/j.is.2023.102322\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Consumers’ needs present a trend of diversification, which causes the emergence of diversified recommendation systems. However, existing diversified recommendation research mostly focuses on objective function construction rather than on the root cause that limits diversity—namely, imbalanced data distribution. This study considers how to balance data distribution to improve recommendation diversity. We propose a novel self-supervised graph model based on counterfactual learning (SSG-CL) for diversified recommendation. SSG-CL first distinguishes the dominant and disadvantageous categories for each user based on long-tail theory. It then introduces counterfactual learning to construct an auxiliary view with relatively balanced distribution among the dominant and disadvantageous categories. Next, we conduct contrastive learning between the user–item interaction graph and the auxiliary view as the self-supervised auxiliary task that aims to improve recommendation diversity. Finally, SSG-CL leverages a multitask training strategy to jointly optimize the main accuracy-oriented recommendation task and the self-supervised auxiliary task. Finally, we conduct experimental studies on real-world datasets, and the results indicate good SSG-CL performance in terms of accuracy and diversity.</p></div>\",\"PeriodicalId\":50363,\"journal\":{\"name\":\"Information Systems\",\"volume\":\"121 \",\"pages\":\"Article 102322\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2023-11-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Information Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0306437923001588\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Systems","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0306437923001588","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
A novel self-supervised graph model based on counterfactual learning for diversified recommendation
Consumers’ needs present a trend of diversification, which causes the emergence of diversified recommendation systems. However, existing diversified recommendation research mostly focuses on objective function construction rather than on the root cause that limits diversity—namely, imbalanced data distribution. This study considers how to balance data distribution to improve recommendation diversity. We propose a novel self-supervised graph model based on counterfactual learning (SSG-CL) for diversified recommendation. SSG-CL first distinguishes the dominant and disadvantageous categories for each user based on long-tail theory. It then introduces counterfactual learning to construct an auxiliary view with relatively balanced distribution among the dominant and disadvantageous categories. Next, we conduct contrastive learning between the user–item interaction graph and the auxiliary view as the self-supervised auxiliary task that aims to improve recommendation diversity. Finally, SSG-CL leverages a multitask training strategy to jointly optimize the main accuracy-oriented recommendation task and the self-supervised auxiliary task. Finally, we conduct experimental studies on real-world datasets, and the results indicate good SSG-CL performance in terms of accuracy and diversity.
期刊介绍:
Information systems are the software and hardware systems that support data-intensive applications. The journal Information Systems publishes articles concerning the design and implementation of languages, data models, process models, algorithms, software and hardware for information systems.
Subject areas include data management issues as presented in the principal international database conferences (e.g., ACM SIGMOD/PODS, VLDB, ICDE and ICDT/EDBT) as well as data-related issues from the fields of data mining/machine learning, information retrieval coordinated with structured data, internet and cloud data management, business process management, web semantics, visual and audio information systems, scientific computing, and data science. Implementation papers having to do with massively parallel data management, fault tolerance in practice, and special purpose hardware for data-intensive systems are also welcome. Manuscripts from application domains, such as urban informatics, social and natural science, and Internet of Things, are also welcome. All papers should highlight innovative solutions to data management problems such as new data models, performance enhancements, and show how those innovations contribute to the goals of the application.