Gabriel A. A. Diab, Marcos A. R. da Silva, Guilherme F. S. R. Rocha, Luis F. G. Noleto, Andrea Rogolino, João P. de Mesquita, Pablo Jiménez-Calvo, Ivo F. Teixeira
{"title":"从太阳能到化学的战略:绿色氢是一种手段,而不是目的","authors":"Gabriel A. A. Diab, Marcos A. R. da Silva, Guilherme F. S. R. Rocha, Luis F. G. Noleto, Andrea Rogolino, João P. de Mesquita, Pablo Jiménez-Calvo, Ivo F. Teixeira","doi":"10.1002/gch2.202300185","DOIUrl":null,"url":null,"abstract":"<p>Green hydrogen is the key to the chemical industry achieving net zero emissions. The chemical industry is responsible for almost 2% of all CO<sub>2</sub> emissions, with half of it coming from the production of simple commodity chemicals, such as NH<sub>3</sub>, H<sub>2</sub>O<sub>2</sub>, methanol, and aniline. Despite electrolysis driven by renewable power sources emerging as the most promising way to supply all the green hydrogen required in the production chain of these chemicals, in this review, it is worth noting that the photocatalytic route may be underestimated and can hold a bright future for this topic. In fact, the production of H<sub>2</sub> by photocatalysis still faces important challenges in terms of activity, engineering, and economic feasibility. However, photocatalytic systems can be tailored to directly convert sunlight and water (or other renewable proton sources) directly into chemicals, enabling a solar-to-chemical strategy. Here, a series of recent examples are presented, demonstrating that photocatalysis can be successfully employed to produce the most important commodity chemicals, especially on NH<sub>3</sub>, H<sub>2</sub>O<sub>2</sub>, and chemicals produced by reduction reactions. The replacement of fossil-derived H<sub>2</sub> in the synthesis of these chemicals can be disruptive, essentially safeguarding the transition of the chemical industry to a low-carbon economy.</p>","PeriodicalId":12646,"journal":{"name":"Global Challenges","volume":"8 6","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2023-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/gch2.202300185","citationCount":"0","resultStr":"{\"title\":\"A Solar to Chemical Strategy: Green Hydrogen as a Means, Not an End\",\"authors\":\"Gabriel A. A. Diab, Marcos A. R. da Silva, Guilherme F. S. R. Rocha, Luis F. G. Noleto, Andrea Rogolino, João P. de Mesquita, Pablo Jiménez-Calvo, Ivo F. Teixeira\",\"doi\":\"10.1002/gch2.202300185\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Green hydrogen is the key to the chemical industry achieving net zero emissions. The chemical industry is responsible for almost 2% of all CO<sub>2</sub> emissions, with half of it coming from the production of simple commodity chemicals, such as NH<sub>3</sub>, H<sub>2</sub>O<sub>2</sub>, methanol, and aniline. Despite electrolysis driven by renewable power sources emerging as the most promising way to supply all the green hydrogen required in the production chain of these chemicals, in this review, it is worth noting that the photocatalytic route may be underestimated and can hold a bright future for this topic. In fact, the production of H<sub>2</sub> by photocatalysis still faces important challenges in terms of activity, engineering, and economic feasibility. However, photocatalytic systems can be tailored to directly convert sunlight and water (or other renewable proton sources) directly into chemicals, enabling a solar-to-chemical strategy. Here, a series of recent examples are presented, demonstrating that photocatalysis can be successfully employed to produce the most important commodity chemicals, especially on NH<sub>3</sub>, H<sub>2</sub>O<sub>2</sub>, and chemicals produced by reduction reactions. The replacement of fossil-derived H<sub>2</sub> in the synthesis of these chemicals can be disruptive, essentially safeguarding the transition of the chemical industry to a low-carbon economy.</p>\",\"PeriodicalId\":12646,\"journal\":{\"name\":\"Global Challenges\",\"volume\":\"8 6\",\"pages\":\"\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2023-11-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/gch2.202300185\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Global Challenges\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/gch2.202300185\",\"RegionNum\":4,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Global Challenges","FirstCategoryId":"103","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/gch2.202300185","RegionNum":4,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
A Solar to Chemical Strategy: Green Hydrogen as a Means, Not an End
Green hydrogen is the key to the chemical industry achieving net zero emissions. The chemical industry is responsible for almost 2% of all CO2 emissions, with half of it coming from the production of simple commodity chemicals, such as NH3, H2O2, methanol, and aniline. Despite electrolysis driven by renewable power sources emerging as the most promising way to supply all the green hydrogen required in the production chain of these chemicals, in this review, it is worth noting that the photocatalytic route may be underestimated and can hold a bright future for this topic. In fact, the production of H2 by photocatalysis still faces important challenges in terms of activity, engineering, and economic feasibility. However, photocatalytic systems can be tailored to directly convert sunlight and water (or other renewable proton sources) directly into chemicals, enabling a solar-to-chemical strategy. Here, a series of recent examples are presented, demonstrating that photocatalysis can be successfully employed to produce the most important commodity chemicals, especially on NH3, H2O2, and chemicals produced by reduction reactions. The replacement of fossil-derived H2 in the synthesis of these chemicals can be disruptive, essentially safeguarding the transition of the chemical industry to a low-carbon economy.