全球二氧化碳的初步评估:空间格局、时间趋势和政策影响

IF 4.4 4区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES Global Challenges Pub Date : 2023-11-16 DOI:10.1002/gch2.202300184
Ahmed M. EI Kenawy, Talal Al-Awadhi, Meshal Abdullah, Rana Jawarneh, Ammar Abulibdeh
{"title":"全球二氧化碳的初步评估:空间格局、时间趋势和政策影响","authors":"Ahmed M. EI Kenawy,&nbsp;Talal Al-Awadhi,&nbsp;Meshal Abdullah,&nbsp;Rana Jawarneh,&nbsp;Ammar Abulibdeh","doi":"10.1002/gch2.202300184","DOIUrl":null,"url":null,"abstract":"<p>This study offers a comprehensive analysis of the distribution, evolution, and driving factors of CO<sub>2</sub> emissions from 1990 to 2016 at multiple spatial scales. Utilizing 26 indicators encompassing various facets of CO<sub>2</sub> emissions, it is employed principal component analysis (PCA) and empirical orthogonal functions (EOFs) to identify the dominant characteristics of global CO<sub>2</sub> emissions. This model retained three core components, accounting for 93% of the global CO<sub>2</sub> variation, reflecting emission trajectories and associated economic metrics, such as Gross domestic product (GDP). The analysis differentiated the effects of these components based on countries' economic standings. Using a novel aggregated index, significant national contributors to global CO<sub>2</sub> emissions are pinpointed. Notably, the leading contributors are found among developed nations (e.g., the United States, Canada, Japan), Gulf states (e.g., Saudi Arabia, Qatar), and emerging economies (e.g., China, Brazil, Mexico). Furthermore, these results highlight that shifts in global CO<sub>2</sub> emissions over the past 30 years are predominantly influenced by factors like industrial emissions and GDP. Results also demonstrate a distinct relationship between a country's CO<sub>2</sub> emissions and its physical and socioeconomic factors. Specifically, the nation's coastline length, population density in coastal regions, and the diversity of its climatic conditions significantly influence its carbon footprint.</p>","PeriodicalId":12646,"journal":{"name":"Global Challenges","volume":"7 12","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2023-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/gch2.202300184","citationCount":"0","resultStr":"{\"title\":\"A Preliminary Assessment of Global CO2: Spatial Patterns, Temporal Trends, and Policy Implications\",\"authors\":\"Ahmed M. EI Kenawy,&nbsp;Talal Al-Awadhi,&nbsp;Meshal Abdullah,&nbsp;Rana Jawarneh,&nbsp;Ammar Abulibdeh\",\"doi\":\"10.1002/gch2.202300184\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This study offers a comprehensive analysis of the distribution, evolution, and driving factors of CO<sub>2</sub> emissions from 1990 to 2016 at multiple spatial scales. Utilizing 26 indicators encompassing various facets of CO<sub>2</sub> emissions, it is employed principal component analysis (PCA) and empirical orthogonal functions (EOFs) to identify the dominant characteristics of global CO<sub>2</sub> emissions. This model retained three core components, accounting for 93% of the global CO<sub>2</sub> variation, reflecting emission trajectories and associated economic metrics, such as Gross domestic product (GDP). The analysis differentiated the effects of these components based on countries' economic standings. Using a novel aggregated index, significant national contributors to global CO<sub>2</sub> emissions are pinpointed. Notably, the leading contributors are found among developed nations (e.g., the United States, Canada, Japan), Gulf states (e.g., Saudi Arabia, Qatar), and emerging economies (e.g., China, Brazil, Mexico). Furthermore, these results highlight that shifts in global CO<sub>2</sub> emissions over the past 30 years are predominantly influenced by factors like industrial emissions and GDP. Results also demonstrate a distinct relationship between a country's CO<sub>2</sub> emissions and its physical and socioeconomic factors. Specifically, the nation's coastline length, population density in coastal regions, and the diversity of its climatic conditions significantly influence its carbon footprint.</p>\",\"PeriodicalId\":12646,\"journal\":{\"name\":\"Global Challenges\",\"volume\":\"7 12\",\"pages\":\"\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2023-11-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/gch2.202300184\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Global Challenges\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/gch2.202300184\",\"RegionNum\":4,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Global Challenges","FirstCategoryId":"103","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/gch2.202300184","RegionNum":4,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

本文综合分析了1990 - 2016年中国二氧化碳排放在多个空间尺度上的分布、演变及其驱动因素。利用涵盖二氧化碳排放各个方面的26个指标,采用主成分分析(PCA)和经验正交函数(EOFs)来确定全球二氧化碳排放的主导特征。该模型保留了三个核心组成部分,占全球二氧化碳变化的93%,反映了排放轨迹和相关的经济指标,如国内生产总值(GDP)。该分析根据各国的经济地位区分了这些组成部分的影响。使用一种新的综合指数,可以确定全球二氧化碳排放的重要国家贡献者。值得注意的是,主要贡献者是发达国家(如美国、加拿大、日本)、海湾国家(如沙特阿拉伯、卡塔尔)和新兴经济体(如中国、巴西、墨西哥)。此外,这些结果强调,过去30年全球二氧化碳排放的变化主要受到工业排放和GDP等因素的影响。结果还表明,一个国家的二氧化碳排放量与其自然和社会经济因素之间存在明显的关系。具体来说,国家的海岸线长度、沿海地区的人口密度和气候条件的多样性显著影响其碳足迹。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Preliminary Assessment of Global CO2: Spatial Patterns, Temporal Trends, and Policy Implications

This study offers a comprehensive analysis of the distribution, evolution, and driving factors of CO2 emissions from 1990 to 2016 at multiple spatial scales. Utilizing 26 indicators encompassing various facets of CO2 emissions, it is employed principal component analysis (PCA) and empirical orthogonal functions (EOFs) to identify the dominant characteristics of global CO2 emissions. This model retained three core components, accounting for 93% of the global CO2 variation, reflecting emission trajectories and associated economic metrics, such as Gross domestic product (GDP). The analysis differentiated the effects of these components based on countries' economic standings. Using a novel aggregated index, significant national contributors to global CO2 emissions are pinpointed. Notably, the leading contributors are found among developed nations (e.g., the United States, Canada, Japan), Gulf states (e.g., Saudi Arabia, Qatar), and emerging economies (e.g., China, Brazil, Mexico). Furthermore, these results highlight that shifts in global CO2 emissions over the past 30 years are predominantly influenced by factors like industrial emissions and GDP. Results also demonstrate a distinct relationship between a country's CO2 emissions and its physical and socioeconomic factors. Specifically, the nation's coastline length, population density in coastal regions, and the diversity of its climatic conditions significantly influence its carbon footprint.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Global Challenges
Global Challenges MULTIDISCIPLINARY SCIENCES-
CiteScore
8.70
自引率
0.00%
发文量
79
审稿时长
16 weeks
期刊最新文献
Issue Information Advancing Economical and Environmentally Conscious Electrification: A Comprehensive Framework for Microgrid Design in Off-Grid Regions Issue Information New Insight into Mercury Removal from Fish Meat Using a Single-Component Solution Containing cysteine Photocatalytic Hydrogen Production Using TiO2-based Catalysts: A Review
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1