生物医学大数据技术、应用与精准医疗挑战综述

IF 4.4 4区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES Global Challenges Pub Date : 2023-11-20 DOI:10.1002/gch2.202300163
Xue Yang, Kexin Huang, Dewei Yang, Weiling Zhao, Xiaobo Zhou
{"title":"生物医学大数据技术、应用与精准医疗挑战综述","authors":"Xue Yang,&nbsp;Kexin Huang,&nbsp;Dewei Yang,&nbsp;Weiling Zhao,&nbsp;Xiaobo Zhou","doi":"10.1002/gch2.202300163","DOIUrl":null,"url":null,"abstract":"<p>The explosive growth of biomedical Big Data presents both significant opportunities and challenges in the realm of knowledge discovery and translational applications within precision medicine. Efficient management, analysis, and interpretation of big data can pave the way for groundbreaking advancements in precision medicine. However, the unprecedented strides in the automated collection of large-scale molecular and clinical data have also introduced formidable challenges in terms of data analysis and interpretation, necessitating the development of novel computational approaches. Some potential challenges include the curse of dimensionality, data heterogeneity, missing data, class imbalance, and scalability issues. This overview article focuses on the recent progress and breakthroughs in the application of big data within precision medicine. Key aspects are summarized, including content, data sources, technologies, tools, challenges, and existing gaps. Nine fields—Datawarehouse and data management, electronic medical record, biomedical imaging informatics, Artificial intelligence-aided surgical design and surgery optimization, omics data, health monitoring data, knowledge graph, public health informatics, and security and privacy—are discussed.</p>","PeriodicalId":12646,"journal":{"name":"Global Challenges","volume":"8 1","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2023-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/gch2.202300163","citationCount":"0","resultStr":"{\"title\":\"Biomedical Big Data Technologies, Applications, and Challenges for Precision Medicine: A Review\",\"authors\":\"Xue Yang,&nbsp;Kexin Huang,&nbsp;Dewei Yang,&nbsp;Weiling Zhao,&nbsp;Xiaobo Zhou\",\"doi\":\"10.1002/gch2.202300163\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The explosive growth of biomedical Big Data presents both significant opportunities and challenges in the realm of knowledge discovery and translational applications within precision medicine. Efficient management, analysis, and interpretation of big data can pave the way for groundbreaking advancements in precision medicine. However, the unprecedented strides in the automated collection of large-scale molecular and clinical data have also introduced formidable challenges in terms of data analysis and interpretation, necessitating the development of novel computational approaches. Some potential challenges include the curse of dimensionality, data heterogeneity, missing data, class imbalance, and scalability issues. This overview article focuses on the recent progress and breakthroughs in the application of big data within precision medicine. Key aspects are summarized, including content, data sources, technologies, tools, challenges, and existing gaps. Nine fields—Datawarehouse and data management, electronic medical record, biomedical imaging informatics, Artificial intelligence-aided surgical design and surgery optimization, omics data, health monitoring data, knowledge graph, public health informatics, and security and privacy—are discussed.</p>\",\"PeriodicalId\":12646,\"journal\":{\"name\":\"Global Challenges\",\"volume\":\"8 1\",\"pages\":\"\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2023-11-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/gch2.202300163\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Global Challenges\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/gch2.202300163\",\"RegionNum\":4,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Global Challenges","FirstCategoryId":"103","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/gch2.202300163","RegionNum":4,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

生物医学大数据的爆炸式增长为精准医学的知识发现和转化应用领域带来了重大机遇和挑战。有效的管理、分析和解释大数据可以为精准医疗的突破性进展铺平道路。然而,在大规模分子和临床数据的自动收集方面,前所未有的进步也在数据分析和解释方面带来了巨大的挑战,需要开发新的计算方法。一些潜在的挑战包括维度的诅咒、数据异构性、丢失数据、类不平衡和可伸缩性问题。本文综述了大数据在精准医疗领域应用的最新进展和突破。总结了关键方面,包括内容、数据源、技术、工具、挑战和现有差距。讨论了9个领域:数据仓库和数据管理、电子病历、生物医学成像信息学、人工智能辅助手术设计和手术优化、组学数据、健康监测数据、知识图谱、公共卫生信息学、安全和隐私。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Biomedical Big Data Technologies, Applications, and Challenges for Precision Medicine: A Review

The explosive growth of biomedical Big Data presents both significant opportunities and challenges in the realm of knowledge discovery and translational applications within precision medicine. Efficient management, analysis, and interpretation of big data can pave the way for groundbreaking advancements in precision medicine. However, the unprecedented strides in the automated collection of large-scale molecular and clinical data have also introduced formidable challenges in terms of data analysis and interpretation, necessitating the development of novel computational approaches. Some potential challenges include the curse of dimensionality, data heterogeneity, missing data, class imbalance, and scalability issues. This overview article focuses on the recent progress and breakthroughs in the application of big data within precision medicine. Key aspects are summarized, including content, data sources, technologies, tools, challenges, and existing gaps. Nine fields—Datawarehouse and data management, electronic medical record, biomedical imaging informatics, Artificial intelligence-aided surgical design and surgery optimization, omics data, health monitoring data, knowledge graph, public health informatics, and security and privacy—are discussed.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Global Challenges
Global Challenges MULTIDISCIPLINARY SCIENCES-
CiteScore
8.70
自引率
0.00%
发文量
79
审稿时长
16 weeks
期刊最新文献
Issue Information Advancing Economical and Environmentally Conscious Electrification: A Comprehensive Framework for Microgrid Design in Off-Grid Regions Issue Information New Insight into Mercury Removal from Fish Meat Using a Single-Component Solution Containing cysteine Photocatalytic Hydrogen Production Using TiO2-based Catalysts: A Review
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1