松辽盆地徐家围子断裂带下白垩统沙河子组孔隙结构对过成熟陆相页岩甲烷吸附的影响

IF 1.8 4区 地球科学 Q3 GEOSCIENCES, MULTIDISCIPLINARY Frontiers of Earth Science Pub Date : 2023-11-18 DOI:10.1007/s11707-022-1051-9
Pengfei Zhang, Shuangfang Lu, Nengwu Zhou, Zizhi Lin, Xiangchun Chang, Junjian Zhang, Guo Chen, Yumao Pang, Junjie Wang, Hongsheng Huang, Qi Zhi
{"title":"松辽盆地徐家围子断裂带下白垩统沙河子组孔隙结构对过成熟陆相页岩甲烷吸附的影响","authors":"Pengfei Zhang, Shuangfang Lu, Nengwu Zhou, Zizhi Lin, Xiangchun Chang, Junjian Zhang, Guo Chen, Yumao Pang, Junjie Wang, Hongsheng Huang, Qi Zhi","doi":"10.1007/s11707-022-1051-9","DOIUrl":null,"url":null,"abstract":"<p>Overmature continental shale is commonly developed, but few studies have given insight into its pore structure and sorption capacity. Various techniques, including SEM, helium porosity and permeability, N<sub>2</sub>/CO<sub>2</sub> adsorption, MICP, and NMR, were used to detect the pore structure of shale from the Shahezi Formation, Xujiaweizi Fault, Songliao Basin. The excess methane adsorption volumes were measured by the volumetric method and modeled by the Langmuir model. Based on the findings, the most developed pores are intraparticle pores in clay minerals, followed by the dissolution pores in feldspar, but organic pores are uncommon. The selected shales have low helium porosity (mean 1.66%) and ultralow permeability (mean 0.0498 × 10<sup>−3</sup>µm<sup>2</sup>). The pore throats are at the nanoscale, and the pore-throat size distributions are unimodal, with most less than 50 nm. The studied shales are characterized by the lower specific surface area (SSA) and pore volume (PV) but the larger average pore diameter. The total SSA is contributed by the micro- and mesopores, while the PV is dominated by meso- and macropores. The pore structures are more complex and controlled by multiple factors, such as mineral compositions and diagenesis, but organic matter is not critical. The maximum absolute adsorption methane volume (<i>V</i><sub><i>L</i></sub>) is 0.97–3.58 cm<sup>3</sup>/g (mean 1.90 cm<sup>3</sup>/g), correlating well with the total SSA, SSA, and pore volume of micropores, which indicates that methane is mainly adsorbed and stored in micropores, followed by mesopores.</p>","PeriodicalId":48927,"journal":{"name":"Frontiers of Earth Science","volume":"11 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2023-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Methane adsorption effected by pore structure of overmature continental shale: Lower Cretaceous Shahezi Formation, Xujiaweizi Fault, Songliao Basin\",\"authors\":\"Pengfei Zhang, Shuangfang Lu, Nengwu Zhou, Zizhi Lin, Xiangchun Chang, Junjian Zhang, Guo Chen, Yumao Pang, Junjie Wang, Hongsheng Huang, Qi Zhi\",\"doi\":\"10.1007/s11707-022-1051-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Overmature continental shale is commonly developed, but few studies have given insight into its pore structure and sorption capacity. Various techniques, including SEM, helium porosity and permeability, N<sub>2</sub>/CO<sub>2</sub> adsorption, MICP, and NMR, were used to detect the pore structure of shale from the Shahezi Formation, Xujiaweizi Fault, Songliao Basin. The excess methane adsorption volumes were measured by the volumetric method and modeled by the Langmuir model. Based on the findings, the most developed pores are intraparticle pores in clay minerals, followed by the dissolution pores in feldspar, but organic pores are uncommon. The selected shales have low helium porosity (mean 1.66%) and ultralow permeability (mean 0.0498 × 10<sup>−3</sup>µm<sup>2</sup>). The pore throats are at the nanoscale, and the pore-throat size distributions are unimodal, with most less than 50 nm. The studied shales are characterized by the lower specific surface area (SSA) and pore volume (PV) but the larger average pore diameter. The total SSA is contributed by the micro- and mesopores, while the PV is dominated by meso- and macropores. The pore structures are more complex and controlled by multiple factors, such as mineral compositions and diagenesis, but organic matter is not critical. The maximum absolute adsorption methane volume (<i>V</i><sub><i>L</i></sub>) is 0.97–3.58 cm<sup>3</sup>/g (mean 1.90 cm<sup>3</sup>/g), correlating well with the total SSA, SSA, and pore volume of micropores, which indicates that methane is mainly adsorbed and stored in micropores, followed by mesopores.</p>\",\"PeriodicalId\":48927,\"journal\":{\"name\":\"Frontiers of Earth Science\",\"volume\":\"11 1\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2023-11-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers of Earth Science\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1007/s11707-022-1051-9\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers of Earth Science","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1007/s11707-022-1051-9","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

过成熟陆相页岩普遍发育,但对其孔隙结构和吸附能力的研究较少。采用SEM、氦孔隙度和渗透率、N2/CO2吸附、MICP、NMR等技术对松辽盆地徐家围子断裂带沙河子组页岩孔隙结构进行了研究。用体积法测定了甲烷的过量吸附体积,并用Langmuir模型建立了模型。结果表明,黏土矿物颗粒内孔发育程度最高,长石溶蚀孔次之,有机孔较少。所选页岩具有低孔隙度(平均1.66%)和超低渗透率(平均0.0498 × 10−3µm2)。孔喉在纳米尺度上分布,孔喉尺寸呈单峰分布,多数小于50 nm。研究区页岩具有比表面积(SSA)和孔隙体积(PV)较低但平均孔径较大的特点。总SSA由微孔和中孔贡献,而PV以中孔和大孔为主。孔隙结构较为复杂,受矿物组成和成岩作用等多种因素的控制,但有机质不是关键因素。甲烷的最大绝对吸附体积(VL)为0.97 ~ 3.58 cm3/g(平均1.90 cm3/g),与总SSA、SSA、微孔孔容相关性较好,表明甲烷主要吸附储存在微孔中,中孔次之。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Methane adsorption effected by pore structure of overmature continental shale: Lower Cretaceous Shahezi Formation, Xujiaweizi Fault, Songliao Basin

Overmature continental shale is commonly developed, but few studies have given insight into its pore structure and sorption capacity. Various techniques, including SEM, helium porosity and permeability, N2/CO2 adsorption, MICP, and NMR, were used to detect the pore structure of shale from the Shahezi Formation, Xujiaweizi Fault, Songliao Basin. The excess methane adsorption volumes were measured by the volumetric method and modeled by the Langmuir model. Based on the findings, the most developed pores are intraparticle pores in clay minerals, followed by the dissolution pores in feldspar, but organic pores are uncommon. The selected shales have low helium porosity (mean 1.66%) and ultralow permeability (mean 0.0498 × 10−3µm2). The pore throats are at the nanoscale, and the pore-throat size distributions are unimodal, with most less than 50 nm. The studied shales are characterized by the lower specific surface area (SSA) and pore volume (PV) but the larger average pore diameter. The total SSA is contributed by the micro- and mesopores, while the PV is dominated by meso- and macropores. The pore structures are more complex and controlled by multiple factors, such as mineral compositions and diagenesis, but organic matter is not critical. The maximum absolute adsorption methane volume (VL) is 0.97–3.58 cm3/g (mean 1.90 cm3/g), correlating well with the total SSA, SSA, and pore volume of micropores, which indicates that methane is mainly adsorbed and stored in micropores, followed by mesopores.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Frontiers of Earth Science
Frontiers of Earth Science GEOSCIENCES, MULTIDISCIPLINARY-
CiteScore
3.50
自引率
5.00%
发文量
627
期刊介绍: Frontiers of Earth Science publishes original, peer-reviewed, theoretical and experimental frontier research papers as well as significant review articles of more general interest to earth scientists. The journal features articles dealing with observations, patterns, processes, and modeling of both innerspheres (including deep crust, mantle, and core) and outerspheres (including atmosphere, hydrosphere, and biosphere) of the earth. Its aim is to promote communication and share knowledge among the international earth science communities
期刊最新文献
Case studies of hailstorms in Shandong Province using hail size discrimination algorithm based on dual Polarimetric parameters Experimental analysis of dust deposition and physical weathering intensity in the Gobi Desert Sedimentary architecture of a sandy braided river with seasonal hydrodynamic variations: insights from the Permian Lower Shihezi Formation, Ordos Basin, China Projected changes of runoff in the Upper Yellow River Basin under shared socioeconomic pathways Applying 3D geological modeling to predict favorable areas for coalbed methane accumulation: a case study in the Qinshui Basin
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1