硒化钽微晶片太赫兹发射器

Pub Date : 2023-11-23 DOI:10.1007/s10946-023-10161-7
Chuanxiang Ye, Jintao Wang
{"title":"硒化钽微晶片太赫兹发射器","authors":"Chuanxiang Ye,&nbsp;Jintao Wang","doi":"10.1007/s10946-023-10161-7","DOIUrl":null,"url":null,"abstract":"<div><p>Terahertz waves possess distinct characteristics, including such as transience, coherence, low energy, penetration, and fingerprint spectroscopy, which render them well-suited for a diverse range of applications in security inspection, nondestructive testing, and environmental detection. However, the efficiency of terahertz wave generation remains constrained by the terahertz source. To address this limitation and minimize losses in the generation process, the selection of band-gap-free semi-metallic materials, as terahertz radiation sources, is of utmost importance. We successfully fabricate TaSe<sub>2</sub> micro-wafer measuring 1×0.5 μm. By employing optical pumping at a wavelength of 1040 nm and a pulse duration of 150 fs, we achieve a terahertz output of nearly 0.005 μW. This output surpasses the terahertz generation efficiency of GaP crystals by approximately 20% under the same power density. Furthermore, we conduct investigations into the impact of incidence and optical polarization on terahertz wave generation. TaSe<sub>2</sub> exhibits suitability for high-efficiency, micro–nano-scale terahertz wave generation applications, such as on-chip terahertz systems and micro–nano terahertz sources.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tantalum Selenide Micro-Wafer Terahertz Emitter\",\"authors\":\"Chuanxiang Ye,&nbsp;Jintao Wang\",\"doi\":\"10.1007/s10946-023-10161-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Terahertz waves possess distinct characteristics, including such as transience, coherence, low energy, penetration, and fingerprint spectroscopy, which render them well-suited for a diverse range of applications in security inspection, nondestructive testing, and environmental detection. However, the efficiency of terahertz wave generation remains constrained by the terahertz source. To address this limitation and minimize losses in the generation process, the selection of band-gap-free semi-metallic materials, as terahertz radiation sources, is of utmost importance. We successfully fabricate TaSe<sub>2</sub> micro-wafer measuring 1×0.5 μm. By employing optical pumping at a wavelength of 1040 nm and a pulse duration of 150 fs, we achieve a terahertz output of nearly 0.005 μW. This output surpasses the terahertz generation efficiency of GaP crystals by approximately 20% under the same power density. Furthermore, we conduct investigations into the impact of incidence and optical polarization on terahertz wave generation. TaSe<sub>2</sub> exhibits suitability for high-efficiency, micro–nano-scale terahertz wave generation applications, such as on-chip terahertz systems and micro–nano terahertz sources.</p></div>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-11-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10946-023-10161-7\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10946-023-10161-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

太赫兹波具有不同的特性,包括瞬态、相干性、低能量、穿透性和指纹光谱,这使得它们非常适合在安全检查、无损检测和环境检测中的各种应用。然而,太赫兹波产生的效率仍然受到太赫兹源的限制。为了解决这一限制并最大限度地减少产生过程中的损耗,选择无带隙的半金属材料作为太赫兹辐射源至关重要。成功制备了尺寸为1×0.5 μm的TaSe2微晶片。利用波长为1040 nm、脉冲持续时间为150 fs的光泵浦,我们实现了近0.005 μW的太赫兹输出。在相同功率密度下,该输出比GaP晶体的太赫兹产生效率高出约20%。此外,我们还研究了入射光偏振对太赫兹波产生的影响。TaSe2显示出高效,微纳米级太赫兹波产生应用的适用性,如片上太赫兹系统和微纳米太赫兹源。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
Tantalum Selenide Micro-Wafer Terahertz Emitter

Terahertz waves possess distinct characteristics, including such as transience, coherence, low energy, penetration, and fingerprint spectroscopy, which render them well-suited for a diverse range of applications in security inspection, nondestructive testing, and environmental detection. However, the efficiency of terahertz wave generation remains constrained by the terahertz source. To address this limitation and minimize losses in the generation process, the selection of band-gap-free semi-metallic materials, as terahertz radiation sources, is of utmost importance. We successfully fabricate TaSe2 micro-wafer measuring 1×0.5 μm. By employing optical pumping at a wavelength of 1040 nm and a pulse duration of 150 fs, we achieve a terahertz output of nearly 0.005 μW. This output surpasses the terahertz generation efficiency of GaP crystals by approximately 20% under the same power density. Furthermore, we conduct investigations into the impact of incidence and optical polarization on terahertz wave generation. TaSe2 exhibits suitability for high-efficiency, micro–nano-scale terahertz wave generation applications, such as on-chip terahertz systems and micro–nano terahertz sources.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1