金属纳米棱镜几何参数对等离子共振波长的影响

Pub Date : 2023-11-24 DOI:10.1007/s10946-023-10171-5
Alexey D. Kondorskiy, Arseniy V. Mekshun
{"title":"金属纳米棱镜几何参数对等离子共振波长的影响","authors":"Alexey D. Kondorskiy,&nbsp;Arseniy V. Mekshun","doi":"10.1007/s10946-023-10171-5","DOIUrl":null,"url":null,"abstract":"<div><p>We study the effect of geometric dimensions on the optical properties of equilateral triangular gold and silver nanoprisms with rounded corners. An analytical expression for calculating the spectral characteristics of the main longitudinal plasmonic resonance of such nanoprisms is obtained. As variables, the expression includes the nanoprism dimensions, its composition, and the permittivity of the surrounding environment. Our results demonstrate that the extinction cross sections can be adequately described by this expression for nanoprisms with edge lengths up to a few hundred nanometers. We show that the scattering of free electrons from the metal/environment interface in metallic nanoprisms can be described with the help of the size-dependent dielectric function. Using a simple relation, we evaluate the necessary effective size parameter, which allows one to achieve a good agreement with experimental data. The results obtained are of interest for solving a number of fundamental problems in nanophotonics and nanoplasmonics, as well as for applications in the development of next-generation optoelectronic devices.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of Geometric Parameters of Metallic Nanoprisms on the Plasmonic Resonance Wavelength\",\"authors\":\"Alexey D. Kondorskiy,&nbsp;Arseniy V. Mekshun\",\"doi\":\"10.1007/s10946-023-10171-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We study the effect of geometric dimensions on the optical properties of equilateral triangular gold and silver nanoprisms with rounded corners. An analytical expression for calculating the spectral characteristics of the main longitudinal plasmonic resonance of such nanoprisms is obtained. As variables, the expression includes the nanoprism dimensions, its composition, and the permittivity of the surrounding environment. Our results demonstrate that the extinction cross sections can be adequately described by this expression for nanoprisms with edge lengths up to a few hundred nanometers. We show that the scattering of free electrons from the metal/environment interface in metallic nanoprisms can be described with the help of the size-dependent dielectric function. Using a simple relation, we evaluate the necessary effective size parameter, which allows one to achieve a good agreement with experimental data. The results obtained are of interest for solving a number of fundamental problems in nanophotonics and nanoplasmonics, as well as for applications in the development of next-generation optoelectronic devices.</p></div>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-11-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10946-023-10171-5\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10946-023-10171-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

研究了几何尺寸对等边三角形圆角金、银纳米棱镜光学性能的影响。得到了计算这类纳米棱镜主纵向等离子体共振光谱特性的解析表达式。作为变量,表达式包括纳米棱镜尺寸,其组成和周围环境的介电常数。我们的结果表明,对于边缘长度达几百纳米的纳米棱镜,该表达式可以充分描述消光截面。我们证明了金属纳米棱镜中金属/环境界面的自由电子散射可以用尺寸相关介电函数来描述。利用一个简单的关系式,我们计算了必要的有效尺寸参数,使其与实验数据吻合得很好。所获得的结果对于解决纳米光子学和纳米等离子体学中的许多基本问题以及下一代光电器件的开发应用具有重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
Effect of Geometric Parameters of Metallic Nanoprisms on the Plasmonic Resonance Wavelength

We study the effect of geometric dimensions on the optical properties of equilateral triangular gold and silver nanoprisms with rounded corners. An analytical expression for calculating the spectral characteristics of the main longitudinal plasmonic resonance of such nanoprisms is obtained. As variables, the expression includes the nanoprism dimensions, its composition, and the permittivity of the surrounding environment. Our results demonstrate that the extinction cross sections can be adequately described by this expression for nanoprisms with edge lengths up to a few hundred nanometers. We show that the scattering of free electrons from the metal/environment interface in metallic nanoprisms can be described with the help of the size-dependent dielectric function. Using a simple relation, we evaluate the necessary effective size parameter, which allows one to achieve a good agreement with experimental data. The results obtained are of interest for solving a number of fundamental problems in nanophotonics and nanoplasmonics, as well as for applications in the development of next-generation optoelectronic devices.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1