参数数分散的加速失效时间模型相对误差估计的渐近性质

Pub Date : 2023-11-27 DOI:10.4310/23-sii816
Fei Ye, Hongyi Zhou, Ying Yang
{"title":"参数数分散的加速失效时间模型相对误差估计的渐近性质","authors":"Fei Ye, Hongyi Zhou, Ying Yang","doi":"10.4310/23-sii816","DOIUrl":null,"url":null,"abstract":"The paper considers the problem of parameter estimation in the accelerated failure time model with divergent number of parameters under fixed design. We propose an estimator based on the general relative error criterion. We show that the proposed estimator is consistent and asymptotically normal under mild regular conditions. We also propose a variable selection procedure and show its oracle property as well as the consistency of model selection. Numerical studies have been conducted to compare the performance of different general relative error based estimators.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Asymptotic properties of relative error estimation for accelerated failure time model with divergent number of parameters\",\"authors\":\"Fei Ye, Hongyi Zhou, Ying Yang\",\"doi\":\"10.4310/23-sii816\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper considers the problem of parameter estimation in the accelerated failure time model with divergent number of parameters under fixed design. We propose an estimator based on the general relative error criterion. We show that the proposed estimator is consistent and asymptotically normal under mild regular conditions. We also propose a variable selection procedure and show its oracle property as well as the consistency of model selection. Numerical studies have been conducted to compare the performance of different general relative error based estimators.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-11-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4310/23-sii816\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/23-sii816","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

研究了在固定设计条件下参数数分散的加速失效时间模型的参数估计问题。我们提出了一种基于一般相对误差准则的估计方法。我们证明了所提出的估计量在轻度正则条件下是一致的和渐近正态的。我们还提出了一个变量选择过程,并展示了它的oracle性和模型选择的一致性。数值研究比较了不同的基于一般相对误差的估计器的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
Asymptotic properties of relative error estimation for accelerated failure time model with divergent number of parameters
The paper considers the problem of parameter estimation in the accelerated failure time model with divergent number of parameters under fixed design. We propose an estimator based on the general relative error criterion. We show that the proposed estimator is consistent and asymptotically normal under mild regular conditions. We also propose a variable selection procedure and show its oracle property as well as the consistency of model selection. Numerical studies have been conducted to compare the performance of different general relative error based estimators.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1