Matthew Fahrbach, Zhiyi Huang, Runzhou Tao, Morteza Zadimoghaddam
{"title":"边加权在线二部匹配","authors":"Matthew Fahrbach, Zhiyi Huang, Runzhou Tao, Morteza Zadimoghaddam","doi":"https://dl.acm.org/doi/10.1145/3556971","DOIUrl":null,"url":null,"abstract":"<p>Online bipartite matching is one of the most fundamental problems in the online algorithms literature. Karp, Vazirani, and Vazirani (STOC 1990) gave an elegant algorithm for unweighted bipartite matching that achieves an optimal competitive ratio of 1-1/e . Aggarwal et al. (SODA 2011) later generalized their algorithm and analysis to the vertex-weighted case. Little is known, however, about the most general edge-weighted problem aside from the trivial 1/2-competitive greedy algorithm. In this article, we present the first online algorithm that breaks the long-standing 1/2 barrier and achieves a competitive ratio of at least 0.5086. In light of the hardness result of Kapralov, Post, and Vondrák (SODA 2013), which restricts beating a 1/2 competitive ratio for the more general monotone submodular welfare maximization problem, our result can be seen as strong evidence that edge-weighted bipartite matching is strictly easier than submodular welfare maximization in an online setting.</p><p>The main ingredient in our online matching algorithm is a novel subroutine called <i>online correlated selection</i> (OCS), which takes a sequence of pairs of vertices as input and selects one vertex from each pair. Instead of using a fresh random bit to choose a vertex from each pair, the OCS negatively correlates decisions across different pairs and provides a quantitative measure on the level of correlation. We believe our OCS technique is of independent interest and will find further applications in other online optimization problems.</p>","PeriodicalId":50022,"journal":{"name":"Journal of the ACM","volume":"4 2","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2022-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Edge-Weighted Online Bipartite Matching\",\"authors\":\"Matthew Fahrbach, Zhiyi Huang, Runzhou Tao, Morteza Zadimoghaddam\",\"doi\":\"https://dl.acm.org/doi/10.1145/3556971\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Online bipartite matching is one of the most fundamental problems in the online algorithms literature. Karp, Vazirani, and Vazirani (STOC 1990) gave an elegant algorithm for unweighted bipartite matching that achieves an optimal competitive ratio of 1-1/e . Aggarwal et al. (SODA 2011) later generalized their algorithm and analysis to the vertex-weighted case. Little is known, however, about the most general edge-weighted problem aside from the trivial 1/2-competitive greedy algorithm. In this article, we present the first online algorithm that breaks the long-standing 1/2 barrier and achieves a competitive ratio of at least 0.5086. In light of the hardness result of Kapralov, Post, and Vondrák (SODA 2013), which restricts beating a 1/2 competitive ratio for the more general monotone submodular welfare maximization problem, our result can be seen as strong evidence that edge-weighted bipartite matching is strictly easier than submodular welfare maximization in an online setting.</p><p>The main ingredient in our online matching algorithm is a novel subroutine called <i>online correlated selection</i> (OCS), which takes a sequence of pairs of vertices as input and selects one vertex from each pair. Instead of using a fresh random bit to choose a vertex from each pair, the OCS negatively correlates decisions across different pairs and provides a quantitative measure on the level of correlation. We believe our OCS technique is of independent interest and will find further applications in other online optimization problems.</p>\",\"PeriodicalId\":50022,\"journal\":{\"name\":\"Journal of the ACM\",\"volume\":\"4 2\",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2022-11-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the ACM\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/https://dl.acm.org/doi/10.1145/3556971\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the ACM","FirstCategoryId":"94","ListUrlMain":"https://doi.org/https://dl.acm.org/doi/10.1145/3556971","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
Online bipartite matching is one of the most fundamental problems in the online algorithms literature. Karp, Vazirani, and Vazirani (STOC 1990) gave an elegant algorithm for unweighted bipartite matching that achieves an optimal competitive ratio of 1-1/e . Aggarwal et al. (SODA 2011) later generalized their algorithm and analysis to the vertex-weighted case. Little is known, however, about the most general edge-weighted problem aside from the trivial 1/2-competitive greedy algorithm. In this article, we present the first online algorithm that breaks the long-standing 1/2 barrier and achieves a competitive ratio of at least 0.5086. In light of the hardness result of Kapralov, Post, and Vondrák (SODA 2013), which restricts beating a 1/2 competitive ratio for the more general monotone submodular welfare maximization problem, our result can be seen as strong evidence that edge-weighted bipartite matching is strictly easier than submodular welfare maximization in an online setting.
The main ingredient in our online matching algorithm is a novel subroutine called online correlated selection (OCS), which takes a sequence of pairs of vertices as input and selects one vertex from each pair. Instead of using a fresh random bit to choose a vertex from each pair, the OCS negatively correlates decisions across different pairs and provides a quantitative measure on the level of correlation. We believe our OCS technique is of independent interest and will find further applications in other online optimization problems.
期刊介绍:
The best indicator of the scope of the journal is provided by the areas covered by its Editorial Board. These areas change from time to time, as the field evolves. The following areas are currently covered by a member of the Editorial Board: Algorithms and Combinatorial Optimization; Algorithms and Data Structures; Algorithms, Combinatorial Optimization, and Games; Artificial Intelligence; Complexity Theory; Computational Biology; Computational Geometry; Computer Graphics and Computer Vision; Computer-Aided Verification; Cryptography and Security; Cyber-Physical, Embedded, and Real-Time Systems; Database Systems and Theory; Distributed Computing; Economics and Computation; Information Theory; Logic and Computation; Logic, Algorithms, and Complexity; Machine Learning and Computational Learning Theory; Networking; Parallel Computing and Architecture; Programming Languages; Quantum Computing; Randomized Algorithms and Probabilistic Analysis of Algorithms; Scientific Computing and High Performance Computing; Software Engineering; Web Algorithms and Data Mining