{"title":"基于近似成本平衡的有向最短路径","authors":"James B. Orlin, László Végh","doi":"https://dl.acm.org/doi/10.1145/3565019","DOIUrl":null,"url":null,"abstract":"<p>We present an <i>O(nm)</i> algorithm for all-pairs shortest paths computations in a directed graph with <i>n</i> nodes, <i>m</i> arcs, and nonnegative integer arc costs. This matches the complexity bound attained by Thorup [31] for the all-pairs problems in undirected graphs. The main insight is that shortest paths problems with approximately balanced directed cost functions can be solved similarly to the undirected case. The algorithm finds an approximately balanced reduced cost function in an <i>O(m</i>√ <i>n</i> log <i>n</i>) preprocessing step. Using these reduced costs, every shortest path query can be solved in <i>O(m)</i> time using an adaptation of Thorup’s component hierarchy method. The balancing result can also be applied to the ℓ<sub>∞</sub>-matrix balancing problem.</p>","PeriodicalId":50022,"journal":{"name":"Journal of the ACM","volume":"23 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2022-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Directed Shortest Paths via Approximate Cost Balancing\",\"authors\":\"James B. Orlin, László Végh\",\"doi\":\"https://dl.acm.org/doi/10.1145/3565019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We present an <i>O(nm)</i> algorithm for all-pairs shortest paths computations in a directed graph with <i>n</i> nodes, <i>m</i> arcs, and nonnegative integer arc costs. This matches the complexity bound attained by Thorup [31] for the all-pairs problems in undirected graphs. The main insight is that shortest paths problems with approximately balanced directed cost functions can be solved similarly to the undirected case. The algorithm finds an approximately balanced reduced cost function in an <i>O(m</i>√ <i>n</i> log <i>n</i>) preprocessing step. Using these reduced costs, every shortest path query can be solved in <i>O(m)</i> time using an adaptation of Thorup’s component hierarchy method. The balancing result can also be applied to the ℓ<sub>∞</sub>-matrix balancing problem.</p>\",\"PeriodicalId\":50022,\"journal\":{\"name\":\"Journal of the ACM\",\"volume\":\"23 1\",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2022-12-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the ACM\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/https://dl.acm.org/doi/10.1145/3565019\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the ACM","FirstCategoryId":"94","ListUrlMain":"https://doi.org/https://dl.acm.org/doi/10.1145/3565019","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
Directed Shortest Paths via Approximate Cost Balancing
We present an O(nm) algorithm for all-pairs shortest paths computations in a directed graph with n nodes, m arcs, and nonnegative integer arc costs. This matches the complexity bound attained by Thorup [31] for the all-pairs problems in undirected graphs. The main insight is that shortest paths problems with approximately balanced directed cost functions can be solved similarly to the undirected case. The algorithm finds an approximately balanced reduced cost function in an O(m√ n log n) preprocessing step. Using these reduced costs, every shortest path query can be solved in O(m) time using an adaptation of Thorup’s component hierarchy method. The balancing result can also be applied to the ℓ∞-matrix balancing problem.
期刊介绍:
The best indicator of the scope of the journal is provided by the areas covered by its Editorial Board. These areas change from time to time, as the field evolves. The following areas are currently covered by a member of the Editorial Board: Algorithms and Combinatorial Optimization; Algorithms and Data Structures; Algorithms, Combinatorial Optimization, and Games; Artificial Intelligence; Complexity Theory; Computational Biology; Computational Geometry; Computer Graphics and Computer Vision; Computer-Aided Verification; Cryptography and Security; Cyber-Physical, Embedded, and Real-Time Systems; Database Systems and Theory; Distributed Computing; Economics and Computation; Information Theory; Logic and Computation; Logic, Algorithms, and Complexity; Machine Learning and Computational Learning Theory; Networking; Parallel Computing and Architecture; Programming Languages; Quantum Computing; Randomized Algorithms and Probabilistic Analysis of Algorithms; Scientific Computing and High Performance Computing; Software Engineering; Web Algorithms and Data Mining