一种估计VRP最优解值的改进模型

IF 1.3 4区 数学 Q2 MATHEMATICS, APPLIED Optimization Letters Pub Date : 2023-12-06 DOI:10.1007/s11590-023-02082-w
Shuhan Kou, Bruce Golden, Luca Bertazzi
{"title":"一种估计VRP最优解值的改进模型","authors":"Shuhan Kou, Bruce Golden, Luca Bertazzi","doi":"10.1007/s11590-023-02082-w","DOIUrl":null,"url":null,"abstract":"<p>Since it is computationally expensive to solve the vehicle routing problem (VRP) optimally, as this problem is NP-hard, in this technical note we study how to accurately approximate the optimal VRP tour length. In our previous papers, we developed a linear regression model including the mean and standard deviation of the modified Clarke and Wright heuristic solution values, which was able to predict the optimal VRP tour length fairly well. In this note, we find that by doing a small amount of extra work to include the minimum of the modified Clarke and Wright heuristic solution values, we can improve the predictive results substantially.</p>","PeriodicalId":49720,"journal":{"name":"Optimization Letters","volume":"BME-27 12","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2023-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An improved model for estimating optimal VRP solution values\",\"authors\":\"Shuhan Kou, Bruce Golden, Luca Bertazzi\",\"doi\":\"10.1007/s11590-023-02082-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Since it is computationally expensive to solve the vehicle routing problem (VRP) optimally, as this problem is NP-hard, in this technical note we study how to accurately approximate the optimal VRP tour length. In our previous papers, we developed a linear regression model including the mean and standard deviation of the modified Clarke and Wright heuristic solution values, which was able to predict the optimal VRP tour length fairly well. In this note, we find that by doing a small amount of extra work to include the minimum of the modified Clarke and Wright heuristic solution values, we can improve the predictive results substantially.</p>\",\"PeriodicalId\":49720,\"journal\":{\"name\":\"Optimization Letters\",\"volume\":\"BME-27 12\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2023-12-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optimization Letters\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s11590-023-02082-w\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optimization Letters","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11590-023-02082-w","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

由于最优求解车辆路由问题(VRP)的计算成本很高,因为这个问题是np困难的,在本技术说明中,我们研究如何准确地近似最优VRP行程长度。在我们之前的论文中,我们建立了一个包含改进的Clarke和Wright启发式解值的均值和标准差的线性回归模型,该模型能够很好地预测最优VRP行程长度。在本文中,我们发现,通过做少量额外的工作来包含修改后的Clarke和Wright启发式解值的最小值,我们可以大大改善预测结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An improved model for estimating optimal VRP solution values

Since it is computationally expensive to solve the vehicle routing problem (VRP) optimally, as this problem is NP-hard, in this technical note we study how to accurately approximate the optimal VRP tour length. In our previous papers, we developed a linear regression model including the mean and standard deviation of the modified Clarke and Wright heuristic solution values, which was able to predict the optimal VRP tour length fairly well. In this note, we find that by doing a small amount of extra work to include the minimum of the modified Clarke and Wright heuristic solution values, we can improve the predictive results substantially.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Optimization Letters
Optimization Letters 管理科学-应用数学
CiteScore
3.40
自引率
6.20%
发文量
116
审稿时长
9 months
期刊介绍: Optimization Letters is an international journal covering all aspects of optimization, including theory, algorithms, computational studies, and applications, and providing an outlet for rapid publication of short communications in the field. Originality, significance, quality and clarity are the essential criteria for choosing the material to be published. Optimization Letters has been expanding in all directions at an astonishing rate during the last few decades. New algorithmic and theoretical techniques have been developed, the diffusion into other disciplines has proceeded at a rapid pace, and our knowledge of all aspects of the field has grown even more profound. At the same time one of the most striking trends in optimization is the constantly increasing interdisciplinary nature of the field. Optimization Letters aims to communicate in a timely fashion all recent developments in optimization with concise short articles (limited to a total of ten journal pages). Such concise articles will be easily accessible by readers working in any aspects of optimization and wish to be informed of recent developments.
期刊最新文献
Minimizing the number of tardy jobs with generalized due-dates and position-dependent processing times A projected fixed point method for a class of vertical tensor complementarity problems The budgeted maximin share allocation problem Explicit iterative algorithms for solving the split equality problems in Hilbert spaces Convergence rate of projected subgradient method with time-varying step-sizes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1